Work sheet to calculate required oil flow for boiler size listed

<table>
<thead>
<tr>
<th>Input info</th>
<th>Input info</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler Size in Lbs. per Hour</td>
<td>Times 1,000 btu/lb = Total BTU output</td>
<td>Approximate Boiler Horsepower</td>
</tr>
<tr>
<td>25,000</td>
<td>25,000,000</td>
<td>725</td>
</tr>
<tr>
<td>BTU per gallon of oil</td>
<td>See Info Below</td>
<td>Divided by .7 for efficiency loss and flow buffer. Total Input GPH required</td>
</tr>
<tr>
<td>145,000</td>
<td></td>
<td>Total GPH required</td>
</tr>
</tbody>
</table>

More Information about boiler

Total SCFH of Natural Gas Needed	Total GPH Feedwater Valve Flow Required
31,250,000 | 4,282 |

Note:

- All calculations are based on a boiler efficiency of 80%
- This is a simple calculation to determine the approximate amount of fuel oil flow for a given size boiler to allow for calculation of the control valve. The final result in the right hand columns are for Gallons per hour (GPH) and Gallons per minute (GPM). The cells are locked except for the ones that will need to be changed for the size of the boiler and type of oil consumed.
- This is also good for sizing a fuel oil meter for a given size boiler, like the Fluidic Flowmeter.
- This table also gives you the approximate SCFH of natural gas required and GPH of Feedwater the valve will need to be able to pass so you can size any control valves properly. The only other thing you will need would be the upstream and downstream pressures (DP) that the valve will see.

Note: Information to Input above

- #2 oil is approximately 145,000 btu/gal
- #5 oil is approximately 147,500 btu/gal
- #6 oil is approximately 152,500 btu/gal