Resistance thermometer, compact design, model TR30
Resistance thermometer, miniature design, model TR31
Widerstandsthermometer, Kompaktausführung, Typ TR30
Widerstandsthermometer, Miniaturausführung, Typ TR31
Sonde à résistance, exécution compacte, type TR30
Sonde à résistance, exécution miniature, type TR31
Térmómetro de resistencia, en versión compacta, modelo TR30
Térmómetro de resistencia, ejecución en miniatura, modelo TR31

Model TR30
with circular connector

Model TR30
with angular connector

Model TR31

Part of your business
Prior to starting any work, read the operating instructions!
Keep for later use!

Vor Beginn aller Arbeiten Betriebsanleitung lesen!
Zum späteren Gebrauch aufbewahren!

Lire le mode d'emploi avant de commencer toute opération!
A conserver pour une utilisation ultérieure!

¡Leer el manual de instrucciones antes de comenzar cualquier trabajo!
¡Guardar el manual para una eventual consulta!
Contents

1. General information 4
2. Safety 5
3. Specifications 8
4. Design and function 12
5. Transport, packaging and storage 15
6. Commissioning, operation 15
7. Configuration of models TR30-W, TR31-W 18
8. Connecting PU-448 programming unit 20
10. Maintenance and cleaning 21
12. Dismounting, return and disposal 21
Appendix 1: EC Declaration of conformity model TR31-W 23

Declarations of conformity can be found online at www.wika.com.
1. General information

■ The resistance thermometer described in the operating instructions has been designed and manufactured using state-of-the-art technology. All components are subject to stringent quality and environmental criteria during production. Our management systems are certified to ISO 9001 and ISO 14001.

■ These operating instructions contain important information on handling the resistance thermometer. Working safely requires that all safety instructions and work instructions are observed.

■ Observe the relevant local accident prevention regulations and general safety regulations for the resistance thermometer’s range of use.

■ The operating instructions are part of the product and must be kept in the immediate vicinity of the resistance thermometer and readily accessible to skilled personnel at any time.

■ Skilled personnel must have carefully read and understood the operating instructions prior to beginning any work.

■ The manufacturer’s liability is void in the case of any damage caused by using the product contrary to its intended use, non-compliance with these operating instructions, assignment of insufficiently qualified skilled personnel or unauthorised modifications to the resistance thermometer.

■ The general terms and conditions contained in the sales documentation shall apply.

■ Subject to technical modifications.

■ Further information:
 - Internet address: www.wika.de / www.wika.com
 - Relevant data sheet: TE 60.30, TE 60.31
 - Application consultant: Tel.: (+49) 9372/132-0
 E-Mail: info@wika.de

Explanation of symbols

WARNING!
... indicates a potentially dangerous situation that can result in serious injury or death, if not avoided.

CAUTION!
... indicates a potentially dangerous situation that can result in light injuries or damage to equipment or the environment, if not avoided.

Information
... points out useful tips, recommendations and information for efficient and trouble-free operation.
1. General information / 2. Safety

DANGER!
...identifies hazards caused by electrical power. Should the safety instructions not be observed, there is a risk of serious or fatal injury.

WARNING!
...indicates a potentially dangerous situation that can result in burns, caused by hot surfaces or liquids, if not avoided.

Abbreviations
RTD "Resistance temperature detector"
TC "Thermocouple"

2. Safety

WARNING!
Before installation, commissioning and operation, ensure that the appropriate resistance thermometer has been selected in terms of measuring range, design, specific measuring conditions and appropriate wetted parts' materials (corrosion). Non-observance can result in serious injury and/or damage to the equipment.

Further important safety instructions can be found in the individual chapters of these operating instructions.

2.1 Intended use
Model TR30 and TR31 resistance thermometers are used as general-purpose thermometers for the measurement of temperatures from -50 … +150 °C (without neck tube) and -50 … +250 °C (with neck tube) in liquid and gaseous media. They can be used for pressures up to 40 bar (special designs to 400 bar dependent on insertion length and diameter).

The instrument has been designed and built solely for the intended use described here, and may only be used accordingly.

The technical specifications contained in these operating instructions must be observed. Improper handling or operation of the instrument outside of its technical specifications requires the instrument to be taken out of service immediately and inspected by an authorised WIKA service engineer.
2. Safety

If the instrument is transported from a cold into a warm environment, the formation of condensation may result in the instrument malfunctioning. Before putting it back into operation, wait for the instrument temperature and the room temperature to equalise.

The manufacturer shall not be liable for claims of any type based on operation contrary to the intended use.

2.2 Personnel qualification

WARNING!
Risk of injury if qualification is insufficient!
Improper handling can result in considerable injury and damage to equipment.
- The activities described in these operating instructions may only be carried out by skilled personnel who have the qualifications described below.
- Keep unqualified personnel away from hazardous areas.

Skilled personnel
Skilled personnel are understood to be personnel who, based on their technical training, knowledge of measurement and control technology and on their experience and knowledge of country-specific regulations, current standards and directives, are capable of carrying out the work described and independently recognising potential hazards.

Special operating conditions require further appropriate knowledge, e.g. of aggressive media.

2.3 Special hazards

WARNING!
For hazardous media such as oxygen, acetylene, flammable or toxic gases or liquids, and refrigeration plants, compressors, etc., in addition to all standard regulations, the appropriate existing codes or regulations must also be followed.

WARNING!
Protection from electrostatic discharge (ESD) required.
The proper use of grounded work surfaces and personal wrist straps is required when working with exposed circuitry (printed circuit boards), in order to prevent static discharge from damaging sensitive electronic components.
2. Safety

To ensure safe working on the instrument, the operating company must ensure

- that suitable first-aid equipment is available and aid is provided whenever required,
- that the operating personnel are regularly instructed in all topics regarding work safety, first aid and environmental protection, and know the operating instructions, in particular the section on safety instructions.

DANGER!

Danger of death caused by electric current

Upon contact with live parts, there is a direct danger of death.

- Electrical instruments may only be installed and connected by skilled electrical personnel.
- Operation using a defective power supply unit (e.g. short circuit from the mains voltage to the output voltage) can result in life-threatening voltages at the instrument!

WARNING!

Residual media in dismounted instruments can result in a risk to personnel, the environment and equipment. Take sufficient precautionary measures.

Do not use this instrument in safety or Emergency Stop devices. Incorrect use of the instrument can result in injury.

Should a failure occur, aggressive media with extremely high temperature and under high pressure or vacuum may be present at the instrument.

2.4 Labelling / safety marks

Product labels

- Resistance thermometer model TR30
2. Safety / 3. Specifications

- Resistance thermometer model TR31

![TR31-W symbol](image)

Explanation of symbols

⚠️ ⇔ 📖 Before mounting and commissioning the instrument, ensure you read the operating instructions!

CE, Communauté Européenne
Instruments bearing this mark comply with the relevant European directives.

3. Specifications

3.1 Resistance thermometer model TR30

- Output signal Pt100, model TR30-P

Measuring element and measuring insert
The Pt100 measuring element is located in the thermometer’s probe tip.

Output signal Pt100, model TR30-P

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature range</td>
<td>Measuring range without neck tube -50 ... +150 °C, with neck tube -50 ... +250 °C</td>
</tr>
<tr>
<td>Measuring element</td>
<td>Pt100 (measuring current: 0.1 ... 1.0 mA)</td>
</tr>
<tr>
<td>Connection method</td>
<td>2-wire, 3-wire, 4-wire</td>
</tr>
<tr>
<td>Sensor tolerance value</td>
<td>1) Class B, Class A</td>
</tr>
<tr>
<td>per DIN EN 60751</td>
<td></td>
</tr>
<tr>
<td>Electrical connection</td>
<td>Angular DIN connector Form A, M12 x 1 circular connector, 4-pin</td>
</tr>
</tbody>
</table>

Readings in % refer to the measuring span.
For a correct determination of the overall measuring error, both sensor and transmitter measuring deviations have to be considered.

1) For detailed specifications for Pt100 sensors, see Technical Information IN 00.17 at www.wika.com.
3. Specifications

Output signal 4 ... 20 mA, model TR30-W

Measuring element and measuring insert

The Pt100 measuring element is located in the thermometer's probe tip. The 4 ... 20 mA transmitter is mounted and potted within the tubular body of the thermometer.

<table>
<thead>
<tr>
<th>Output signal 4 ... 20 mA, model TR30-W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature range</td>
</tr>
<tr>
<td>Measuring range without neck tube -50 ... +150 °C, with neck tube -50 ... +250 °C</td>
</tr>
<tr>
<td>Measuring element</td>
</tr>
<tr>
<td>Pt100 measuring element located in the thermometer's probe tip.</td>
</tr>
<tr>
<td>Sensor tolerance value</td>
</tr>
<tr>
<td>per DIN EN 60751</td>
</tr>
<tr>
<td>Class B</td>
</tr>
<tr>
<td>Measuring span</td>
</tr>
<tr>
<td>minimum 20 K, maximum 300 K</td>
</tr>
<tr>
<td>Basic configuration</td>
</tr>
<tr>
<td>Measuring range 0 ... 150 °C, other measuring ranges are adjustable</td>
</tr>
<tr>
<td>Analogue output</td>
</tr>
<tr>
<td>4 ... 20 mA, 2-wire</td>
</tr>
<tr>
<td>Measuring error</td>
</tr>
<tr>
<td>per DIN EN 60770, 23 °C ±5 K</td>
</tr>
<tr>
<td>Linearisation</td>
</tr>
<tr>
<td>linear with temperature per DIN EN 60751</td>
</tr>
<tr>
<td>Linearisation error</td>
</tr>
<tr>
<td>±0.1 %</td>
</tr>
<tr>
<td>Switch-on delay, electrical</td>
</tr>
<tr>
<td>< 10 ms</td>
</tr>
<tr>
<td>Signalling of sensor burnout</td>
</tr>
<tr>
<td>configurable: NAMUR downscale < 3.6 mA (typically 3 mA)</td>
</tr>
<tr>
<td>Sensor short-circuit</td>
</tr>
<tr>
<td>not configurable, generally NAMUR downscale < 3.6 mA (typ. 3 mA)</td>
</tr>
<tr>
<td>Load RA</td>
</tr>
<tr>
<td>RA ≤ (UB - 9 V) / 0.023 A with RA in Ω and UB in V</td>
</tr>
<tr>
<td>Effect of load</td>
</tr>
<tr>
<td>± 0.05 % / 100 Ω</td>
</tr>
<tr>
<td>Power supply</td>
</tr>
<tr>
<td>DC 10 ... 35 V</td>
</tr>
<tr>
<td>Power supply input</td>
</tr>
<tr>
<td>protected against reverse polarity</td>
</tr>
<tr>
<td>Power supply effect</td>
</tr>
<tr>
<td>± 0.025 % / V</td>
</tr>
<tr>
<td>Electromagnetic compatibility (EMC)</td>
</tr>
<tr>
<td>2004/108/EC, DIN EN 61326 emission (Group 1, Class B) and immunity (industrial application) 5), and also per NAMUR NE21</td>
</tr>
<tr>
<td>Temperature units</td>
</tr>
<tr>
<td>configurable °C, °F, K</td>
</tr>
<tr>
<td>Info data</td>
</tr>
<tr>
<td>TAG No., descriptor and message can be stored in transmitter</td>
</tr>
<tr>
<td>Configuration and calibration data</td>
</tr>
<tr>
<td>permanently stored in EEPROM</td>
</tr>
<tr>
<td>Electrical connection</td>
</tr>
<tr>
<td>Angular DIN connector Form A, M12 x 1 circular connector, 4-pin</td>
</tr>
</tbody>
</table>

Readings in % refer to the measuring span

For a correct determination of the overall measuring error, both sensor and transmitter measuring deviations have to be considered.

1) For detailed specifications for Pt100 sensors, see Technical Information IN 00.17 at www.wika.com.
2) The temperature transmitter should therefore be protected from temperatures over 85 °C.
3) For measuring spans smaller than 50 K additional 0.1 K
4) ± 0.2 % for measuring ranges with a lower limit less than 0 °C
5) Use resistance thermometers with shielded cable, and ground the shield on at least one end of the lead, if the cables are longer than 30 m or leave the building.
3. Specifications

Load diagram

The permissible load depends on the loop supply voltage.

For setting the measuring range see chapter "7. Configuration of models TR30-W and TR31-W".

- **Output signal 0 ... 10 V, model TR30-V**

Measuring element and measuring insert

The Pt100 measuring element is located in the thermometer's probe tip.

The 0 ... 10 V transmitter is mounted in the tubular body of the thermometer.

<table>
<thead>
<tr>
<th>Output signal 0 ... 10 V, model TR30-V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature range</td>
</tr>
<tr>
<td>Measuring range without neck tube -50 ... +150 °C, with neck tube -50 ... +200 °C 2), measuring ranges are not adjustable</td>
</tr>
<tr>
<td>Measuring element</td>
</tr>
<tr>
<td>Pt100 (measuring current: 0.5 mA)</td>
</tr>
<tr>
<td>Sensor tolerance value 1)</td>
</tr>
<tr>
<td>per DIN EN 60751</td>
</tr>
<tr>
<td>Class B</td>
</tr>
<tr>
<td>Measuring span</td>
</tr>
<tr>
<td>minimum 50 K, maximum 250 K</td>
</tr>
<tr>
<td>Basic configuration</td>
</tr>
<tr>
<td>Measuring range 0 ... 100 °C</td>
</tr>
<tr>
<td>Measuring ranges</td>
</tr>
<tr>
<td>-50 ... +50, 0 ... 50, 0 ... 80, 0 ... 100, 0 ... 120, 0 ... 150, 0 ... 200 °C</td>
</tr>
<tr>
<td>Analogue output</td>
</tr>
<tr>
<td>0 ... 10 V, 3-wire</td>
</tr>
<tr>
<td>Overall measuring error 3)</td>
</tr>
<tr>
<td>< 0.5 % of span</td>
</tr>
<tr>
<td>Power supply</td>
</tr>
<tr>
<td>DC 12 ... 30 V</td>
</tr>
<tr>
<td>Max. permissible residual ripple</td>
</tr>
<tr>
<td>10 %</td>
</tr>
<tr>
<td>Electromagnetic compatibility (EMC)</td>
</tr>
<tr>
<td>2004/108/EC, EN 61326 emission (Group 1, Class B) and interference immunity (industrial application) 4)</td>
</tr>
<tr>
<td>Electrical connection</td>
</tr>
<tr>
<td>Angular DIN connector Form A, M12 x 1 circular connector, 4-pin</td>
</tr>
</tbody>
</table>

Readings in % refer to the measuring span

For a correct determination of the overall measuring error, both sensor and transmitter measuring deviations have to be considered.

1) For detailed specifications for Pt100 sensors, see Technical Information IN 00.17 at www.wika.com.
2) The temperature transmitter should therefore be protected from temperatures over 85 °C
3) For measuring spans smaller than 50 K additional 0.1 K
4) Use resistance thermometers with shielded cable, and ground the shield on at least one end of the lead, if the cables are longer than 30 m or leave the building.

For further specifications on the TR30 see WIKA data sheet TE 60.30.
3. Specifications

3.2 Resistance thermometer model TR31

Output signal Pt100, model TR31-P

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature range</td>
<td>Measuring range without neck tube -50 ... +150 °C, with neck tube -50 ... +250 °C</td>
</tr>
<tr>
<td>Measuring element</td>
<td>Pt100 (measuring current: 0.1 ... 1.0 mA)</td>
</tr>
<tr>
<td>Connection method</td>
<td>3-wire</td>
</tr>
<tr>
<td>Sensor tolerance value 1)</td>
<td>Class B</td>
</tr>
<tr>
<td>per DIN EN 60751</td>
<td>Class A</td>
</tr>
</tbody>
</table>

Output signal 4 ... 20 mA, model TR31-W

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature range</td>
<td>Measuring range without neck tube -50 ... +150 °C, with neck tube -50 ... +250 °C</td>
</tr>
<tr>
<td>Measuring element</td>
<td>Pt100 (measuring current: approx. 0.5 mA)</td>
</tr>
<tr>
<td>Connection method</td>
<td>3-wire</td>
</tr>
<tr>
<td>Sensor tolerance value 1)</td>
<td>Class B</td>
</tr>
<tr>
<td>per DIN EN 60751</td>
<td>Class A</td>
</tr>
<tr>
<td>Measuring span</td>
<td>minimum 20 K, maximum 300 K</td>
</tr>
<tr>
<td>Basic configuration</td>
<td>Measuring range 0 ... 150 °C, other measuring ranges are adjustable</td>
</tr>
<tr>
<td>Analogue output</td>
<td>4 ... 20 mA, 2-wire</td>
</tr>
<tr>
<td>Measuring deviation per DIN 60770, 23 °C ± 5 K</td>
<td>0.2 % (Transmitter) 3)</td>
</tr>
<tr>
<td>Linearisation</td>
<td>linear with temperature per DIN EN 60751</td>
</tr>
<tr>
<td>Linearisation error</td>
<td>±0.1 % 4)</td>
</tr>
<tr>
<td>Switch-on delay, electrical</td>
<td>< 10 ms</td>
</tr>
<tr>
<td>Signalling of sensor burnout</td>
<td>configurable: NAMUR downscale < 3.6 mA (typically 3 mA)</td>
</tr>
<tr>
<td></td>
<td>NAMUR upscale > 21.0 mA (typically 23 mA)</td>
</tr>
<tr>
<td>Sensor short-circuit</td>
<td>not configurable, generally NAMUR downscale < 3.6 mA (typ. 3 mA)</td>
</tr>
<tr>
<td>Load RA</td>
<td>$R_A \leq \frac{(U_B - 9 V)}{0.023 A} \text{ with } R_A \text{ in } \Omega \text{ and } U_B \text{ in } V$</td>
</tr>
<tr>
<td>Effect of load</td>
<td>± 0.05 % / 100 Ω</td>
</tr>
<tr>
<td>Power supply</td>
<td>DC 10 ... 35 V</td>
</tr>
<tr>
<td>Max. permissible residual ripple</td>
<td>10 % at 24 V / maximum 300 Ω Load</td>
</tr>
<tr>
<td>Power supply input</td>
<td>protected against reverse polarity</td>
</tr>
<tr>
<td>Power supply effect</td>
<td>± 0.025 % / V</td>
</tr>
<tr>
<td>Electromagnetic compatibility (EMC)</td>
<td>2004/108/EC, EN 61326 emission (Group 1, Class B) and interference immunity (industrial application) 5)</td>
</tr>
<tr>
<td>Temperature units</td>
<td>configurable °C, °F, K</td>
</tr>
<tr>
<td>Info data</td>
<td>TAG No., descriptor and message can be stored in transmitter</td>
</tr>
<tr>
<td>Configuration and calibration data</td>
<td>permanently stored in EEPROM</td>
</tr>
<tr>
<td>Electrical connection</td>
<td>M12 x 1, 4-pin circular connector</td>
</tr>
</tbody>
</table>

Readings in % refer to the measuring span
For a correct determination of the overall measuring error, both sensor and transmitter measuring deviations have to be considered.

1) For detailed specifications for Pt100 sensors, see Technical Information IN 00.17 at www.wika.com.
2) The temperature transmitter should therefore be protected from temperatures over 85 °C
3) For measuring spans smaller than 50 K additional 0.1 K
4) ± 0.2 % for measuring ranges with a lower limit less than 0 °C
5) Use resistance thermometers with shielded cable, and ground the shield on at least one end of the lead, if the cables are longer than 30 m or leave the building.
3. Specifications / 4. Design and function

Ambient conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient and storage temperature</td>
<td>-40 °C ... +85 °C</td>
</tr>
<tr>
<td>Ingress protection</td>
<td>IP 67 IEC 529 / EN 60529</td>
</tr>
<tr>
<td></td>
<td>The stated ingress protection</td>
</tr>
<tr>
<td></td>
<td>only applies when plugged in</td>
</tr>
<tr>
<td></td>
<td>using mating connectors that</td>
</tr>
<tr>
<td></td>
<td>have the appropriate ingress</td>
</tr>
<tr>
<td></td>
<td>protection.</td>
</tr>
<tr>
<td>Response time 6)</td>
<td>t50 < 3.3 s 190 < 9.7 s (for</td>
</tr>
<tr>
<td></td>
<td>thermowell diameter 6 mm)</td>
</tr>
<tr>
<td>Materials</td>
<td>Case: stainless steel 1.4571</td>
</tr>
<tr>
<td>Vibration resistance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ 3 g (DIN EN 60751, standard)</td>
</tr>
<tr>
<td></td>
<td>■ 20 g (DIN EN 60751, special</td>
</tr>
<tr>
<td></td>
<td>designs, up to a max. insertion</td>
</tr>
<tr>
<td></td>
<td>length of 160 mm, no compression</td>
</tr>
<tr>
<td></td>
<td>fittings)</td>
</tr>
</tbody>
</table>

6) Measurement in accordance with DIN EN 60751 4.3.3

For further specifications for the TR31 see WIKA data sheet TE 60.31.

4. Design and function

4.1 Description

The models TR30 and TR31 resistance thermometers consist of a thermowell with fixed process connection, and are screwed directly into the process. They are designed to be resistant to shock and vibration and all electrical components are protected against splashed water. The vibration resistance of the standard version complies with DIN EN 60751 (up to 3 g); specific designs can withstand up to 10 g. The impact resistance for all versions meets the requirements of DIN EN 60751. The electrical connection is made via a angular DIN connector, Form A (TR30) or M12 x 1 circular connector (TR30, TR31).
4. Design and function

4.2 Dimensions in mm

4.2.1 Resistance thermometer model TR30

- Process connection with parallel threads (or without process connection)

- Process connection with tapered threads

Legend:
- A A length (insertion length)
- N Neck tube length (70 mm)
- Ød Thermowell diameter
4. Design and function

4.2.2 Resistance thermometer model TR31
- Process connection with parallel threads (or without process connection)

4.3 Scope of delivery
Cross-check scope of delivery with the delivery note.
5. Transport, packaging and storage

5.1 Transport
Check the instrument for any damage that may have been caused during transportation. Obvious damage must be reported immediately.

5.2 Packaging
Do not remove packaging until just before mounting. Keep the packaging as it will provide optimum protection during transport (e.g. change in installation site, sending for repair).

5.3 Storage

Permissible conditions at the place of storage:
■ Storage temperature: 0 ... 70 °C
■ Humidity: 35 ... 85 % relative humidity (no condensation)

Avoid exposure to the following factors:
■ Direct sunlight or proximity to hot objects
■ Mechanical vibration, mechanical shock (putting it down hard)
■ Soot, vapour, dust and corrosive gases

Store the instrument in its original packaging in a location that fulfils the conditions listed above. If the original packaging is not available, pack and store the instrument as described below:
1. Wrap the instrument in an antistatic plastic film.
2. Place the instrument, along with shock-absorbent material, in the packaging.
3. If stored for a prolonged period of time (more than 30 days), place a bag containing a desiccant inside the packaging.

WARNING!
Before storing the instrument (following operation), remove any residual media. This is of particular importance if the medium is hazardous to health, e.g. caustic, toxic, carcinogenic, radioactive, etc.

6. Commissioning, operation

WARNING!
Avoid putting mechanical stress on the electrical connections or on the enclosures. The maximum temperatures of -50... +150 °C (without neck tube) and -50 ... +250 °C or -50 ... +200 °C for TR30-V (with neck tube) must not be exceeded. Connections must only be opened when the instrument is depressurised and has cooled down.
6. Commissioning, operation

6.1 Mounting
These resistance thermometers are designed for screw-fitting directly into the process. The insertion length, along with the flow velocity and viscosity of the process media, may reduce the max. loading on the thermowell.

Installation examples

Installation on pipes
a on elbows
b in small pipes, inclined
c perpendicular to flow direction

For information on tapped holes, please refer to DIN 3852, or ANSI B 1.20 for NPT threads.

6.2 Electrical connection
■ Output signal Pt100, model TR30-P

Angular connector DIN EN 175301-803, Form A

Circular connector M12 x 1, 4-pin
6. Commissioning, operation

- Output signal 4 ... 20 mA, model TR30-W
 - Angular connector DIN EN 175301-803, Form A
 - Circular connector M12 x 1, 4-pin

- Output signal 0 ... 10 V, model TR30-V
 - Angular connector DIN EN 175301-803, Form A
 - Circular connector M12 x 1, 4-pin

- Output signal Pt100, model TR31-P
 - Circular connector M12 x 1, 4-pin

- Output signal 4 ... 20 mA, model TR31-W
 - Circular connector M12 x 1, 4-pin
Version with angular connector (DIN EN 175301-803)
For the cable leads we recommend the use of crimped ferrules.

To ensure IP 65 ingress protection:
- Always use the silicon seals
- Tighten the locking screw
Ensure the cables are inserted carefully

6.3 Measuring range settings for the model TR30-V
Possible combinations of the lower and upper limits of the measuring range:
Transmitter lower values: 0 °C, -20 °C, -50 °C
Transmitter upper values: +50 °C, +100 °C, +120 °C, +150 °C, +200 °C, +250 °C

Please note:
The measuring range is factory set and cannot be adjusted.
The span of the measuring range is:
Maximum 250 K
Minimum 50 K
Example with neck tube: -50 … +200 °C or 0 … +250 °C.

7. Configuration of models TR30-W and TR31-W

Configuration is carried out via a USB interface with a PC via the model PU-448 programming unit (accessories, order no. 11606304).
The connection with the thermometer is made via the appropriate adapter cable.
- Accessories, M12 x 1 circular connector: order no. 14003193
- Accessories, angular DIN connector: order no. 14005324
Measuring range, signalisation and also further parameters are configurable; see configuration software.

- Easy to use
- LED status display
- Compact version
- No further power supply is needed for either the programming unit or the transmitter
- Measuring the loop current of resistance thermometers are possible
7. Configuration of models TR30-W and TR31-W

The lower limit of the measuring range is configurable between -50 ... +150 °C. The possible upper limit of the measuring range is dependent on the respective lower limit of the measuring range. For possible combinations of lower and upper limits of the measuring range, see diagram. For clarity, this dependency has been shown in 50 °C steps in the examples in this diagram. The configuration software checks the required measuring range and will only accept permissible values. Intermediate values are configurable; the smallest increment is 0.1 °C. The thermometers are delivered with a basic configuration (0 ... +150 °C, downscale) or configured to customer specifications within the configurable limits.

With configuration to customer specifications, the measuring range will be shown clearly on the instrument label. The configuration and the choice of parameters is described in the menu-driven configuration software. Changes to the configuration must be noted on the label using a water-resistant felt-tip pen.

Possible combinations of the lower and upper limits of the measuring range
The upper limit of the measuring range is dependent on the respective lower limit of the measuring range. For clarity, this dependency has been shown in 50 °C steps in the examples in these diagrams. The configuration software checks the required measuring range and will only accept permissible values. Intermediate values are configurable; the smallest increment is 0.1 °C.

Diagram for measuring range for model TR30-W

<table>
<thead>
<tr>
<th>Measuring range in °C</th>
<th>Range of possible upper limits to measuring range in °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50 °C</td>
<td>-50 ... +100 °C</td>
</tr>
<tr>
<td>-40 °C</td>
<td>-40 ... +100 °C</td>
</tr>
<tr>
<td>0 °C</td>
<td>0 ... +100 °C</td>
</tr>
<tr>
<td>+10 °C</td>
<td>+10 ... +100 °C</td>
</tr>
<tr>
<td>+20 °C</td>
<td>+20 ... +150 °C</td>
</tr>
<tr>
<td>+50 °C</td>
<td>+50 ... +250 °C</td>
</tr>
</tbody>
</table>

Please note: The measuring range of the thermometer is limited by the application range of the measuring element, not by the adjustable range of the transmitter. Without neck tube -50 ... +150 °C with neck tube -50 ... +250 °C.
8. Connecting PU-448 programming unit

Adapter cable for M12 connector
(models TR30-W and TR31-W resistance thermometers)

Adapter cable for angular DIN connector, Form A
(model TR30-W resistance thermometer)
9. Maintenance and cleaning

9.1 Maintenance
The resistance thermometers described here require absolutely no maintenance and contain no components which could be repaired or replaced.

9.2 Cleaning

CAUTION!
- Before cleaning the instrument disconnect the electrical connections.
- Clean the instrument with a moist cloth.
- Electrical connections must not come into contact with moisture.
- Wash or clean the dismounted instrument before returning it in order to protect personnel and the environment from exposure to residual media.
- Residual media in dismounted instruments can result in a risk to persons, the environment and equipment. Take sufficient precautionary measures.

For information on returning the instrument see chapter "10.2 Return".

10. Dismounting, return and disposal

WARNING!
Residual media in dismounted instruments can result in a risk to personnel, the environment and equipment.
Take sufficient precautionary measures.

10.1 Dismounting

WARNING!
Risk of burns!
Let the instrument cool down sufficiently before dismounting!
During dismounting there is a risk of dangerously hot pressure media escaping.

Only disconnect the resistance thermometer once the system has been depressurised!
10. Dismounting, return and disposal

10.2 Return

WARNING!
Absolutely observe when shipping the instrument:
All instruments delivered to WIKA must be free from any kind of hazardous substances (acids, leachate, solutions, etc.).

When returning the instrument, use the original packaging or a suitable transport package.

To avoid damage:
1. Wrap the instrument in an antistatic plastic film.
2. Place the instrument, along with shock-absorbent material, in the packaging.
 Place shock-absorbent material evenly on all sides of the shipping box.
3. If possible, place a bag containing a desiccant inside the packaging.
4. Label the shipment as carriage of a highly sensitive measuring instrument.

Enclose the completed returns form with the instrument.

The returns form is available on the internet:
[www.wika.com / Service / Return](http://www.wika.com)

10.3 Disposal
Incorrect disposal can put the environment at risk.

Dispose of instrument components and packaging materials in an environmentally compatible way and in accordance with the country-specific waste disposal regulations.
Appendix 1: EC Declaration of conformity model TR31-W

EG-Konformitätserklärung

Dokument Nr.: 14011511.01
Wir erklären in alleineriger Verantwortung, dass die mit CE gekennzeichneten Produkte
typ: TR31-W
Beschreibung: Widerstandsthermometer Typ TR31, Miniaturausführung
gemäß gültigen Datenblättern: TE 60.31
die grundlegenden Schutzanforderungen der folgenden Richtlinie(n) erfüllen: 2004/108/EG (EMV)
Die Geräte wurden entsprechend den folgenden Normen geprüft: EN 61326-1:2006
EN 61326-2-3:2006

EC Declaration of Conformity

Document No.: 14011511.01
We declare under our sole responsibility that the CE marked products
Model: TR31-W
Description: Resistance thermometer model TR31, miniature design
according to the valid data sheets: TE 60.31
are in conformity with the essential protection requirements of the directive(s) 2004/108/EC (EMC)
The devices have been tested according to the following standards: EN 61326-1:2006
EN 61326-2-3:2006

Unterzeichnet für und im Namen von / Signed for and on behalf of

WIKA Alexander Wiegand SE & Co. KG
Klingenberg, 2011-05-04
Geschäftsbereich / Company division: MP-TM
Qualitätsmanagement / Quality management: MP-TM

Jürgen Schüssler

Unterschrift, autorisiert durch das Unternehmen / Signature authorized by the company

Matthias Rau
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Kapitel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Allgemeines</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>Sicherheit</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>Technische Daten</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>Aufbau und Funktion</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>Transport, Verpackung und Lagerung</td>
<td>37</td>
</tr>
<tr>
<td>6</td>
<td>Inbetriebnahme, Betrieb</td>
<td>37</td>
</tr>
<tr>
<td>7</td>
<td>Konfiguration der Typen TR30-W, TR31-W</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>Programmiereinheit PU-448 anschließen</td>
<td>42</td>
</tr>
<tr>
<td>9</td>
<td>Wartung und Reinigung</td>
<td>43</td>
</tr>
<tr>
<td>10</td>
<td>Demontage, Rücksendung und Entsorgung</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Anlage 1: EG-Konformitätserklärung Typ TR31-W</td>
<td>23</td>
</tr>
</tbody>
</table>

Konformitätserklärungen finden Sie online unter www.wika.de.
1. Allgemeines

- Diese Betriebsanleitung gibt wichtige Hinweise zum Umgang mit dem Widerstandsthermometer. Voraussetzung für sicheres Arbeiten ist die Einhaltung aller angegebenen Sicherheitshinweise und Handlungsanweisungen.
- Die für den Einsatzbereich des Widerstandsthermometers geltenden örtlichen Unfallverhütungsvorschriften und allgemeinen Sicherheitsbestimmungen einhalten.
- Die Betriebsanleitung ist Produktbestandteil und muss in unmittelbarer Nähe des Widerstandsthermometers für das Fachpersonal jederzeit zugänglich aufbewahrt werden.
- Das Fachpersonal muss die Betriebsanleitung vor Beginn aller Arbeiten sorgfältig durchgelesen und verstanden haben.
- Die Haftung des Herstellers erlischt bei Schäden durch bestimmungswidrige Verwendung, Nichtbeachten dieser Betriebsanleitung, Einsatz ungenügend qualifizierten Fachpersonals sowie eigenmächtiger Veränderung am Widerstandsthermometer.
- Es gelten die allgemeinen Geschäftsbedingungen in den Verkaufsunterlagen.
- Technische Änderungen vorbehalten.

Weitere Informationen:
- Internet-Adresse: www.wika.de / www.wika.com
- zugehöriges Datenblatt: TE 60.30, TE 60.31
- Anwendungsberater: Tel.: (+49) 9372/132-0
 E-Mail: info@wika.de

Symbolerklärung

WARNUNG!
... weist auf eine möglicherweise gefährliche Situation hin, die zum Tod oder zu schweren Verletzungen führen kann, wenn sie nicht gemieden wird.

VORSICHT!
... weist auf eine möglicherweise gefährliche Situation hin, die zu geringfügigen oder leichten Verletzungen bzw. Sach- und Umweltschäden führen kann, wenn sie nicht gemieden wird.

Information
... hebt nützliche Tipps und Empfehlungen sowie Informationen für einen effizienten und störungsfreien Betrieb hervor.
GEFAHR!
...kennzeichnet Gefährdungen durch elektrischen Strom. Bei Nichtbeachtung der Sicherheitshinweise besteht die Gefahr schwerer oder tödlicher Verletzungen.

WARNUNG!
... weist auf eine möglicherweise gefährliche Situation hin, die durch heiße Oberflächen oder Flüssigkeiten zu Verbrennungen führen kann, wenn sie nicht gemieden wird.

Abkürzungen
RTD englisch: "Resistance temperature detector"; Widerstandsthermometer
TC englisch: "Thermocouple"; Thermoelement

2. Sicherheit

WARNUNG!
Vor Montage, Inbetriebnahme und Betrieb sicherstellen, dass das richtige Widerstandsthermometer hinsichtlich Messbereich, Ausführung, spezifischen Messbedingungen und geeignetem messstoffberührtem Werkstoff (Korrosion) ausgewählt wurde. Bei Nichtbeachten können schwere Körperverletzungen und/oder Sachschäden auftreten.

Weitere wichtige Sicherheitshinweise befinden sich in den einzelnen Kapiteln dieser Betriebsanleitung.

2.1 Bestimmungsgemäße Verwendung
Die Widerstandsthermometer Typen TR30 und TR31 werden als universelle Thermometer zum Messen von Temperaturen von -50 ... +150 °C (ohne Halsrohr) und -50 ... +250 °C (mit Halsrohr) in flüssigen und gasförmigen Medien verwendet. Sie sind einsetzbar für Drücke bis 40 bar (Sonderbauformen bis 400 bar, abhängig von Einbautiefe und Durchmesser).

Das Gerät ist ausschließlich für den hier beschriebenen bestimmungsgemäßen Verwendungszweck konzipiert und konstruiert und darf nur dementsprechend verwendet werden.
2. Sicherheit

Die technischen Spezifikationen in dieser Betriebsanleitung sind einzuhalten. Eine unsachgemäße Handhabung oder ein Betreiben des Gerätes außerhalb der technischen Spezifikationen macht die sofortige Stilllegung und Überprüfung durch einen autorisierten WIKA-Servicemitarbeiter erforderlich.

Wird das Gerät von einer kalten in eine warme Umgebung transportiert, so kann durch Kondensatbildung eine Störung der Gerätefunktion eintreten. Vor einer erneuten Inbetriebnahme die Angleichung der Gerätetemperatur an die Raumtemperatur abwarten.

Ansprüche jeglicher Art aufgrund von nicht bestimmungsgemäßer Verwendung sind ausgeschlossen.

2.2 Personalqualifikation

WARNUNG!
Verletzungsgefahr bei unzureichender Qualifikation!

Unsachgemäßer Umgang kann zu erheblichen Personen- und Sachschäden führen.
- Die in dieser Betriebsanleitung beschriebenen Tätigkeiten nur durch Fachpersonal nachfolgend beschriebener Qualifikation durchführen lassen.
- Unqualifiziertes Personal von den Gefahrenbereichen fernhalten.

Fachpersonal

Das Fachpersonal ist aufgrund seiner fachlichen Ausbildung, seiner Kenntnisse der Mess- und Regelungstechnik und seiner Erfahrungen sowie Kenntnis der landesspezifischen Vorschriften, geltenden Normen und Richtlinien in der Lage, die beschriebenen Arbeiten auszuführen und mögliche Gefahren selbstständig zu erkennen.

Spezielle Einsatzbedingungen verlangen weiteres entsprechendes Wissen, z. B. über aggressive Medien.

2.3 Besondere Gefahren

WARNUNG!

Bei gefährlichen Messstoffen wie z. B. Sauerstoff, Acetylen, brennbaren oder giftigen Stoffen, sowie bei Kältetechnik, Kompressoren etc. müssen über die gesamten allgemeinen Regeln hinaus die einschlägigen Vorschriften beachtet werden.

WARNUNG!

Schutz vor elektrostatischer Entladung (ESD) erforderlich!
Die ordnungsgemäße Verwendung geerdeter Arbeitsflächen und persönlicher Armbänder ist bei Arbeiten mit offenen Schaltkreisen (Leiterplatten) erforderlich, um die Beschädigung empfindlicher elektronischer Bauteile durch elektrostatische Entladung zu vermeiden.
Für ein sicheres Arbeiten am Gerät muss der Betreiber sicherstellen,
■ dass eine entsprechende Erste-Hilfe-Ausrüstung vorhanden ist und bei Bedarf jederzeit Hilfe zur Stelle ist.
■ dass das Bedienpersonal regelmäßig in allen zutreffenden Fragen von Arbeitssicherheit, Erste-Hilfe und Umweltschutz unterwiesen wird, sowie die Betriebsanleitung und insbesondere die darin enthaltenen Sicherheitshinweise kennt.

GEFAHR!
Lebensgefahr durch elektrischen Strom
Bei Berührung mit spannungsführenden Teilen besteht unmittelbare Lebensgefahr.
■ Einbau und Montage des elektrischen Gerätes dürfen nur durch das Elektrofachpersonal erfolgen.
■ Bei Betrieb mit einem defekten Netzgerät (z. B. Kurzschluss von Netzspannung zur Ausgangsspannung) können am Gerät lebensgefährliche Spannungen auftreten!

WARNUNG!
Messstoffreste in ausgebauten Geräten können zur Gefährdung von Personen, Umwelt und Einrichtung führen.
Ausreichende Vorsichtsmaßnahmen ergreifen.

Am Gerät können im Fehlerfall aggressive Medien mit extremer Temperatur und unter hohem Druck oder Vakuum anliegen.

2.4 Beschilderung / Sicherheitskennzeichnungen

Typenschilder
■ Widerstandsthermometer Typ TR30
2. Sicherheit / 3. Technische Daten

■ Widerstandsthermometer Typ TR31

Symbolerklärung

Vor Montage und Inbetriebnahme des Gerätes unbedingt die Betriebsanleitung lesen!

CE, Communauté Européenne
Geräte mit dieser Kennzeichnung stimmen überein mit den zutreffenden europäischen Richtlinien.

3. Technische Daten

3.1 Widerstandsthermometer Typ TR30

■ Ausgangssignal Pt100, Typ TR30-P

Messelement und Messeinsatz
Das Pt100-Messelement befindet sich in der Fühlerspitze des Thermometers.

Ausgangssignal Pt100, Typ TR30-P

<table>
<thead>
<tr>
<th>Temperaturbereich</th>
<th>Messbereich ohne Halsrohr -50 ... +150 °C, mit Halsrohr -50 ... +250 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messelement</td>
<td>Pt100 (Messstrom: 0,1 ... 1,0 mA)</td>
</tr>
<tr>
<td>Schaltungsart</td>
<td>2-Leiter</td>
</tr>
<tr>
<td></td>
<td>3-Leiter</td>
</tr>
<tr>
<td></td>
<td>4-Leiter</td>
</tr>
<tr>
<td>Grenzabweichung des Messelements 1) nach DIN EN 60751</td>
<td>Klasse B</td>
</tr>
<tr>
<td></td>
<td>Klasse A</td>
</tr>
<tr>
<td>Elektrischer Anschluss</td>
<td>DIN-Winkelstecker Form A, M12 x 1 Rundsteckverbinder 4-polig</td>
</tr>
</tbody>
</table>

Angaben in % beziehen sich auf die Messspanne
Bei der Ermittlung der Gesamtmesabweichung sind sowohl die Sensor- als auch die Transmitter-Mesabweichung zu berücksichtigen.

1) Detaillierte Angaben zu Pt100-Sensoren siehe Technische Information IN 00.17 unter www.wika.de.
3. Technische Daten

Auszugssignal 4 ... 20 mA, Typ TR30-W

Messelement und Messeinsatz

Das Pt100-Messelement befindet sich in der Fühlerspitze des Thermometers.
Der Transmitter 4 ... 20 mA ist im Rohrkörper des Thermometers eingebaut und vergossen.

Auszugssignal 4 ... 20 mA, Typ TR30-W

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperaturbereich</td>
<td>Messbereich ohne Halsrohr -50 ... +150 °C, mit Halsrohr -50 ... +250 °C</td>
</tr>
<tr>
<td>Messelement</td>
<td>Pt100 (Messstrom: 0,5 mA)</td>
</tr>
<tr>
<td>Grenzabweichung des Messelements 1) nach DIN EN 60751</td>
<td>Klasse B</td>
</tr>
<tr>
<td>Messspanne</td>
<td>minimal 20 K, maximal 300 K</td>
</tr>
<tr>
<td>Grundkonfiguration</td>
<td>Messbereich 0 ... 150 °C, andere Messbereiche sind einstellbar</td>
</tr>
<tr>
<td>Analogausgang</td>
<td>4 ... 20 mA, 2-Draht-Technik</td>
</tr>
<tr>
<td>Messabweichung nach DIN EN 60770, 23 °C ±5 K</td>
<td>0,2 % (Transmitter) 3)</td>
</tr>
<tr>
<td>Linearisierung</td>
<td>Temperaturlinear nach DIN EN 60751</td>
</tr>
<tr>
<td>Linearitätsfehler</td>
<td>±0,1 % ⁴)</td>
</tr>
<tr>
<td>Einschaltverzögerung, elektrisch</td>
<td>< 10 ms</td>
</tr>
<tr>
<td>Signalisierung Fühlerbruch</td>
<td>konfigurierbar: NAMUR zusteuernd < 3,6 mA (typisch 3 mA) NAMUR aufsteuernd > 21,0 mA (typisch 23 mA)</td>
</tr>
<tr>
<td>Fühlerkurzschluss</td>
<td>nicht konfigurierbar, generell NAMUR zusteuernd < 3,6 mA (typ. 3 mA)</td>
</tr>
<tr>
<td>Bürde Rₐ</td>
<td>Rₐ ≤ (UB - 9V) / 0,023 A mit Rₐ in Ω und UB in V</td>
</tr>
<tr>
<td>Bündeneinfluss</td>
<td>± 0,05 % / 100 Ω</td>
</tr>
<tr>
<td>Hilfsenergie</td>
<td>DC 10 ... 35 V</td>
</tr>
<tr>
<td>Max. zulässige Restwelligkeit</td>
<td>10 % bei 24 V / maximal 300 Ω Bürde</td>
</tr>
<tr>
<td>Hilfsenergieeingang</td>
<td>geschützt gegen Verpolung</td>
</tr>
<tr>
<td>Hilfsenergieinfluss</td>
<td>± 0,025 % / V</td>
</tr>
<tr>
<td>Elektromagnetische Verträglichkeit (EMV)</td>
<td>2004/108/EG, EN 61326 Emission (Gruppe 1, Klasse B) und Störfestigkeit (industrieller Bereich) ⁵), sowie nach NAMUR NE21</td>
</tr>
<tr>
<td>Temperatureinheiten</td>
<td>konfigurierbar °C, °F, K</td>
</tr>
<tr>
<td>Info-Daten</td>
<td>TAG-Nr., Descriptor und Message im Transmitter speicherbar</td>
</tr>
<tr>
<td>Konfigurations- und Kalibrierungsdaten</td>
<td>dauerhaft gespeichert in EEPROM</td>
</tr>
<tr>
<td>Elektrischer Anschluss</td>
<td>DIN-Winkelstecker Form A, M12 x 1 Rundsteckverbinder 4-polig</td>
</tr>
</tbody>
</table>

Angaben in % beziehen sich auf die Messspanne
Bei der Ermittlung der Gesamtmessabweichung sind sowohl die Sensor- als auch die Transmitter-Messabweichung zu berücksichtigen.

1) Detaillierte Angaben zu Pt100-Sensoren siehe Technische Information IN 00.17 unter www.wika.de.
2) Der Temperatur-Transmitter ist dabei vor Temperaturen über 85 °C zu schützen
3) Für Messspannen kleiner 50 K zusätzlich 0,1 K
4) ± 0,2 % bei Messbereichsanfang kleiner 0 °C
5) Widerstandsthermometer mit geschirmter Leitung betreiben und den Schirm auf mindestens einer Leitungsseite erden, wenn die Leitungen länger als 30 m sind oder das Gebäude verlassen.
3. Technische Daten

Bürdendiagramm

Die zulässige Bürde hängt ab von der Spannung der Schleifenversorgung.

■ Ausgangssignal 0 ... 10 V, Typ TR30-V

Messelement und Messeinsatz

Das Pt100-Messelement befindet sich in der Fühlerspitze des Thermometers.

Der Transmitter 0 ... 10 V ist im Rohrkörper des Thermometers eingebaut.

<table>
<thead>
<tr>
<th>Ausgangssignal 0 ... 10 V, Typ TR30-V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperaturbereich</td>
</tr>
<tr>
<td>Messelement</td>
</tr>
<tr>
<td>Grenzabweichung des Messelements 1)</td>
</tr>
<tr>
<td>nach DIN EN 60751</td>
</tr>
<tr>
<td>Messspanne</td>
</tr>
<tr>
<td>Grundkonfiguration</td>
</tr>
<tr>
<td>Messbereiche</td>
</tr>
<tr>
<td>Analogausgang</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Hilfsenergie</td>
</tr>
<tr>
<td>Max. zulässige Restwelligkeit</td>
</tr>
<tr>
<td>Elektromagnetische Verträglichkeit (EMV)</td>
</tr>
<tr>
<td>Elektrischer Anschluss</td>
</tr>
</tbody>
</table>

Angaben in % beziehen sich auf die Messspanne
Bei der Ermittlung der Gesamt-Messabweichung sind sowohl die Sensor- als auch die Transmitter-Messabweichung zu berücksichtigen.

1) Detaillierte Angaben zu Pt100-Sensoren siehe Technische Information IN 00.17 unter www.wika.de.
2) Der Temperatur-Transmitter ist dabei vor Temperaturen über 85 °C zu schützen
3) Für Messspannen kleiner 50 K zusätzlich 0,1 K
4) Widerstandsthermometer mit geschirmter Leitung betreiben und den Schirm auf mindestens einer Leitungsseite erden, wenn die Leitungen länger als 30 m sind oder das Gebäude verlassen.

Weitere technische Daten des TR30 siehe WIKA Datenblatt TE 60.30.
3. Technische Daten

3.2 Widerstandsthermometer Typ TR31

Ausgangssignal Pt100, Typ TR31-P

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperaturbereich</td>
<td>Messbereich ohne Halsrohr -50 ... +150 °C, mit Halsrohr -50 ... +250 °C</td>
</tr>
<tr>
<td>Messelement</td>
<td>Pt100 (Messstrom: 0,1 ... 1,0 mA)</td>
</tr>
<tr>
<td>Schaltungsart</td>
<td>3-Leiter</td>
</tr>
<tr>
<td>Grenzabweichung des Messelements</td>
<td>Klasse B</td>
</tr>
</tbody>
</table>

1) nach DIN EN 60751

Ausgangssignal 4 ... 20 mA, Typ TR31-W

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperaturbereich</td>
<td>Messbereich ohne Halsrohr -50 ... +150 °C, mit Halsrohr -50 ... +250 °C</td>
</tr>
<tr>
<td>Messelement</td>
<td>Pt100 (Messstrom: ca. 0,5 mA)</td>
</tr>
<tr>
<td>Schaltungsart</td>
<td>3-Leiter</td>
</tr>
<tr>
<td>Grenzabweichung des Messelements</td>
<td>Klasse B</td>
</tr>
</tbody>
</table>

1, 3) nach DIN EN 60751

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messspanne</td>
<td>minimal 20 K, maximal 300 K</td>
</tr>
<tr>
<td>Grundkonfiguration</td>
<td>Messbereich 0 ... 150 °C, andere Messbereiche sind einstellbar</td>
</tr>
<tr>
<td>Analogausgang</td>
<td>4 ... 20 mA, 2-Draht-Technik</td>
</tr>
<tr>
<td>Messabweichung nach DIN EN 60770, 23 °C ±5 K</td>
<td>0,2 % (Transmitter) 3)</td>
</tr>
<tr>
<td>Linearisierung</td>
<td>Temperaturlinear nach DIN EN 60751</td>
</tr>
<tr>
<td>Linearitätsfehler</td>
<td>±0,1 % 4)</td>
</tr>
<tr>
<td>Einschaltverzögerung, elektrisch</td>
<td>< 10 ms</td>
</tr>
<tr>
<td>Signalisierung Fühlerbruch</td>
<td>konfigurierbar: NAMUR zusteuernd < 3,6 mA (typisch 3 mA)</td>
</tr>
<tr>
<td></td>
<td>NAMUR aufsteuernd > 21,0 mA (typisch 23 mA)</td>
</tr>
<tr>
<td>Fühlerkurzschluss</td>
<td>nicht konfigurierbar, generell NAMUR zusteuernd < 3,6 mA (typ. 3 mA)</td>
</tr>
<tr>
<td>Bürde RA</td>
<td>$R_A \leq (U_B - 9V) / 0,023 A$ mit R_A in Ω und U_B in V</td>
</tr>
<tr>
<td>Bürdeneinfluss</td>
<td>± 0,05 % / 100 Ω</td>
</tr>
<tr>
<td>Hilfsenergie</td>
<td>DC 10 ... 35 V</td>
</tr>
<tr>
<td>Max. zulässige Restwelligkeit</td>
<td>10 % bei 24 V / maximal 300 Ω Bürde</td>
</tr>
<tr>
<td>Hilfsenergieeingang</td>
<td>geschützt gegen Verpolung</td>
</tr>
<tr>
<td>Hilfsenergieeinfluss</td>
<td>± 0,025 % / V</td>
</tr>
<tr>
<td>Elektromagnetische Verträglichkeit (EMV)</td>
<td>2004/108/EG, EN 61326 Emission (Gruppe 1, Klasse B) und</td>
</tr>
<tr>
<td></td>
<td>Störfestigkeit (industrieller Bereich) 5)</td>
</tr>
<tr>
<td>Temperatureinheiten</td>
<td>konfigurierbar °C, °F, K</td>
</tr>
<tr>
<td>Info-Daten</td>
<td>TAG-Nr., Descriptor und Message im Transmitter speicherbar</td>
</tr>
<tr>
<td>Konfigurations- und Kalibrierungsdaten</td>
<td>dauerhaft gespeichert in EEPROM</td>
</tr>
<tr>
<td>Elektrischer Anschluss</td>
<td>M12 x 1 Rundsteckverbinder 4-polig</td>
</tr>
</tbody>
</table>

Angaben in % beziehen sich auf die Messspanne
Bei der Ermittlung der Gesamtmessabweichung sind sowohl die Sensor- als auch die Transmitter-Messabweichung zu berücksichtigen.

1) Detaillierte Angaben zu Pt100-Sensoren siehe Technische Information IN 00.17 unter www.wika.de.
2) Der Temperatur-Transmitter ist dabei vor Temperaturen über 85 °C zu schützen
3) Für Messspannen kleiner 50 K zusätzlich 0,1 K
4) ± 0,2 % bei Messbereichsanfang kleiner 0 °C
5) Widerstandsthermometer mit geschirmter Leitung betreiben und den Schirm auf mindestens einer Leitungsseite erden, wenn die Leitungen länger als 30 m sind oder das Gebäude verlassen.
3. Technische Daten / 4. Aufbau und Funktion

<table>
<thead>
<tr>
<th>Umgebungsbedingungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umgebungs- und Lagertemperatur</td>
</tr>
<tr>
<td>Schutzart</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ansprechzeit 6)</td>
</tr>
<tr>
<td>Werkstoffe</td>
</tr>
<tr>
<td>Vibrationsfestigkeit</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

6) Messung gemäß DIN EN 60751 4.3.3

Weitere technische Daten des TR31 siehe WIKA Datenblatt TE 60.31.

4. Aufbau und Funktion

4.1 Beschreibung
4. Aufbau und Funktion

4.2 Abmessungen in mm

4.2.1 Widerstandsthermometer Typ TR30

- Prozessanschluss mit zylindrischem Gewinde (bzw. ohne Prozessanschluss)

- Prozessanschluss mit konischem Gewinde

Legende:
A A-Länge (Einbaulänge)
N Halsrohrlänge
 (70 mm)
Ød Schutzrohdurchmesser
4. Aufbau und Funktion

4.2.2 Widerstandsthermometer Typ TR31

- Prozessanschluss mit zylindrischem Gewinde (bzw. ohne Prozessanschluss)

4. Aufbau und Funktion

Legende:

- U₁ Einbaulänge
- Ød Schutzrohrdurchmesser

4.3 Lieferumfang

Lieferumfang mit dem Lieferschein abgleichen.
5. Transport, Verpackung, Lagerung / 6. Inbetriebnahme, ...

5. Transport, Verpackung und Lagerung

5.1 Transport
Gerät auf eventuell vorhandene Transportschäden untersuchen. Offensichtliche Schäden unverzüglich mitteilen.

5.2 Verpackung
Verpackung erst unmittelbar vor der Montage entfernen. Die Verpackung aufbewahren, denn diese bietet bei einem Transport einen optimalen Schutz (z. B. wechselnder Einbauort, Reparatursendung).

5.3 Lagerung
Zulässige Bedingungen am Lagerort:

- Lagertemperatur: 0 ... 70 °C
- Feuchtigkeit: 35 ... 85 % relative Feuchte (keine Betauung)

Folgende Einflüsse vermeiden:

- Direktes Sonnenlicht oder Nähe zu heißen Gegenständen
- Mechanische Vibration, mechanischer Schock (hartes Aufstellen)
- Ruß, Dampf, Staub und korrosive Gase

Das Gerät in der Originalverpackung an einem Ort, der die oben gelisteten Bedingungen erfüllt, lagern. Wenn die Originalverpackung nicht vorhanden ist, dann das Gerät wie folgt verpacken und lagern:
1. Das Gerät in eine antistatische Plastikfolie einhüllen.
2. Das Gerät mit dem Dämmmaterial in der Verpackung platzieren.
3. Bei längerer Einlagerung (mehr als 30 Tage) einen Beutel mit Trocknungsmittel der Verpackung beilegen.

WARNUNG!
Vor der Einlagerung des Gerätes (nach Betrieb) alle anhaftenden Messstoffreste entfernen. Dies ist besonders wichtig, wenn der Messstoff gesundheitsgefährdend ist, wie z. B. ätzend, giftig, krebserregend, radioaktiv, usw.

6. Inbetriebnahme, Betrieb

WARNUNG!
Mechanische Belastungen der elektrischen Anschlüsse und der Gehäuse vermeiden. Die maximalen Temperaturen von -50... +150 °C (ohne Halsrohr) und -50... +250 °C bzw. -50 ... +200 °C bei TR30-V (mit Halsrohr) nicht überschreiten. Alle Anschlüsse nur im drucklosen und abgekühlten Zustand öffnen.
6. Inbetriebnahme, Betrieb

6.1 Montage

Einbaubeispiele

Installation an Rohren
a am Winkelstück
b in kleinerem Rohr, geneigt
c senkrecht zur Strömungsrichtung

Angaben zu den Einschraublöchern entnehmen Sie bitte der DIN 3852 bzw. der ANSI B 1.20 für NPT-Gewinde.

6.2 Elektrischer Anschluss
- Ausgangssignal Pt100, Typ TR30-P

Winkelstecker DIN EN 175301-803, Form A

Rundsteckverbinder 4-polig M12 x 1
6. Inbetriebnahme, Betrieb

- Ausgangssignal 4 ... 20 mA, Typ TR30-W
 - Winkelstecker DIN EN 175301-803, Form A
 - Rundsteckverbinder 4-polig M12 x 1

- Ausgangssignal 0 ... 10 V, Typ TR30-V
 - Winkelstecker DIN EN 175301-803, Form A
 - Rundsteckverbinder 4-polig M12 x 1

- Ausgangssignal Pt100, Typ TR31-P
 - Rundsteckverbinder 4-polig M12 x 1

- Ausgangssignal 4 ... 20 mA, Typ TR31-W
 - Rundsteckverbinder 4-polig M12 x 1
6. Inbetriebnahme, Betrieb / 7. Konfiguration der Typen ...

Ausführung mit Winkelstecker (DIN EN 175301-803)
Bei Litzenadern empfehlen wir das Verwenden von gecrimpten Aderendhülsen.

Zum Sicherstellen der Schutzart IP 65:
- Immer die Silikon-Dichtung verwenden
- Verriegelungsschraube anziehen
- Kabeleinführung sorgfältig ausführen

6.3 Messbereichseinstellungen des Typ TR30-V
Mögliche Kombinationen von Messbereichsanfang / -ende:
Transmitter Anfangswert: 0 °C, -20 °C, -50 °C
Transmitter Endwert: +50 °C, +100 °C, +120 °C, +150 °C, +200 °C, +250 °C

Bitte beachten:
Der Messbereich ist werkseitig voreingestellt und nicht verstellbar.
Die Spanne des Messbereiches beträgt:
Maximal 250 K
Minimal 50 K
Beispiel mit Halsrohr: -50 ... +200 °C oder 0 ... +250 °C.

7. Konfiguration der Typen TR30-W, TR31-W
Das Konfigurieren erfolgt über die USB-Schnittstelle eines PC’s via Programmiereinheit Typ PU-448 (Zubehör, Bestell-Nr. 11606304).
Mittels passendem Adapterkabel wird die Verbindung zum Thermometer hergestellt.
- Zubehör, Rundsteckverbinder M12 x 1: Bestell-Nr. 14003193
- Zubehör, DIN-Winkelstecker: Bestell-Nr. 14005324
Konfigurierbar sind Messbereich und Signalisierung sowie weitere Parameter, siehe Konfigurationssoftware.

- Einfache Bedienung
- LED-Status-Anzeigen
- Kompakte Bauform
- Keine zusätzliche Spannungsversorgung weder für die Programmiereinheit noch für den Transmitter notwendig
- Messung des Schleifenstroms von Widerstandsthermometern möglich
Der Messbereichsanfang ist konfigurierbar zwischen -50 ...+150 °C. Das mögliche Messbereichsende ist abhängig vom jeweiligen Messbereichsanfang. Mögliche Kombinationen von Messbereichsanfang/-ende siehe Diagramm. Zur Übersicht wird diese Abhängigkeit in diesem Diagramm beispielhaft in 50 °C-Schritten dargestellt. Die Konfigurationssoftware überprüft den gewünschten Messbereich und akzeptiert nur zulässige Werte. Zwischenwerte sind konfigurierbar, die kleinste Schrittweite ist 0,1 °C. Ausgeliefert werden die Thermometer mit einer Grundkonfiguration (0 ... +150 °C, Zusteu-ernd) oder konfiguriert nach Kundenvorgabe im Rahmen der Konfigurationsmöglichkeiten.

Mögliche Kombinationen von Messbereichsanfang/-ende
Das Messbereichsende ist abhängig vom jeweiligen Messbereichsanfang. Zur Übersicht wird diese Abhängigkeit in diesen Diagrammen beispielhaft in 50 °C-Schritten dargestellt. Die Konfigurationssoftware überprüft den gewünschten Messbereich und akzeptiert nur zulässige Werte. Zwischenwerte sind konfigurierbar, die kleinste Schrittweite ist 0,1 °C.

Diagramm für Messbereiche des Typ TR30-W

Bitte beachten:
Der Messbereich des Thermometers wird begrenzt durch den Anwendungsbereich des Messelementes, nicht durch den Einstellbereich des Transmitters.

ohne Halsrohr: -50 ... +150 °C
mit Halsrohr: -50 ... +250 °C
8. Programmiereinheit PU-448 anschließen

Adapterkabel für Anschluss M12
(Widerstandsthermometer Typen TR30-W, TR31-W)

Adapterkabel für Anschluss DIN Winkelstecker, Form A
(Widerstandsthermometer Typ TR30-W)
9. Wartung und Reinigung

9.1 Wartung
Die hier beschriebenen Widerstandsthermometer sind wartungsfrei und enthalten keinerlei Bauteile, welche repariert oder ausgetauscht werden könnten.

9.2 Reinigung

VORSICHT!
- Vor der Reinigung des Gerätes elektrische Anschlüsse trennen.
- Das Gerät mit einem feuchten Tuch reinigen.
- Elektrische Anschlüsse nicht mit Feuchtigkeit in Berührung bringen.
- Ausgebautes Gerät vor der Rücksendung spülen bzw. säubern, um Personen und Umwelt vor Gefährdung durch anhaftende Messstoffreste zu schützen.

Hinweise zur Rücksendung des Gerätes siehe Kapitel „10.2 Rücksendung“.

10. Demontage, Rücksendung und Entsorgung

WARNUNG!
Messstoffreste in ausgebauten Geräten können zur Gefährdung von Personen, Umwelt und Einrichtung führen. Ausreichende Vorsichtsmaßnahmen ergreifen.

10.1 Demontage

WARNUNG!
Verbrennungsgefahr!
Vor dem Ausbau das Gerät ausreichend abkühlen lassen!
Beim Ausbau besteht Gefahr durch austretende, gefährlich heiße Messstoffe.

Widerstandsthermometer nur im drucklosen Zustand demontieren!
10. Demontage, Rücksendung und Entsorgung

10.2 Rücksendung

WARNUNG!
Beim Versand des Gerätes unbedingt beachten:
Alle an WIKA gelieferten Geräte müssen frei von Gefahrstoffen (Säuren, Laugen, Lösungen, etc.) sein.

Zur Rücksendung des Gerätes die Originalverpackung oder eine geeignete Transportverpackung verwenden.

Um Schäden zu vermeiden:
1. Das Gerät in eine antistatische Plastikfolie einhüllen.
2. Das Gerät mit dem Dämmmaterial in der Verpackung platzieren.
 Zu allen Seiten der Transportverpackung gleichmäßig dämmen.
3. Wenn möglich einen Beutel mit Trocknungsmittel der Verpackung beifügen.
4. Sendung als Transport eines hochempfindlichen Messgerätes kennzeichnen.

Dem Gerät das Rücksendeformular ausgefüllt beifügen.

Das Rücksendeformular steht im Internet zur Verfügung:
www.wika.de / Service / Rücksendung

10.3 Entsorgung

Durch falsche Entsorgung können Gefahren für die Umwelt entstehen. Gerätekomponenten und Verpackungsmaterialien entsprechend den landesspezifischen Abfallbehandlungs- und Entsorgungsvorschriften umweltgerecht entsorgen.
Sommaire

<table>
<thead>
<tr>
<th>Numéro</th>
<th>Titre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Généralités</td>
<td>46</td>
</tr>
<tr>
<td>2.</td>
<td>Sécurité</td>
<td>47</td>
</tr>
<tr>
<td>3.</td>
<td>Spécifications</td>
<td>50</td>
</tr>
<tr>
<td>4.</td>
<td>Conception et fonction</td>
<td>54</td>
</tr>
<tr>
<td>5.</td>
<td>Transport, emballage et stockage</td>
<td>57</td>
</tr>
<tr>
<td>6.</td>
<td>Mise en service, exploitation</td>
<td>57</td>
</tr>
<tr>
<td>7.</td>
<td>Configuration du types TR30-W, TR31-W</td>
<td>60</td>
</tr>
<tr>
<td>8.</td>
<td>Raccordement de l’unité de programmation PU-448</td>
<td>62</td>
</tr>
<tr>
<td>9.</td>
<td>Entretien et nettoyage</td>
<td>63</td>
</tr>
<tr>
<td>10.</td>
<td>Démontage, retour et mise au rebut</td>
<td>63</td>
</tr>
<tr>
<td>Annexe 1</td>
<td>Déclaration de conformité CE type TR31-W</td>
<td>65</td>
</tr>
</tbody>
</table>

Déclarations de conformité se trouvent sur www.wika.fr.
1. Généralités

■ La sonde à résistance décrite dans le mode d'emploi est conçu et fabriqué selon les dernières technologies en vigueur. Tous les composants sont soumis à des critères de qualité et d'environnement stricts durant la fabrication. Nos systèmes de gestion sont certifiés selon ISO 9001 et ISO 14001.

■ Ce mode d'emploi donne des indications importantes concernant l'utilisation de la sonde à résistance. Il est possible de travailler en toute sécurité avec ce produit en respectant toutes les consignes de sécurité et d'utilisation.

■ Respecter les prescriptions locales de prévention contre les accidents et les prescriptions générales de sécurité en vigueur pour le domaine d'application de la sonde à résistance.

■ Le mode d'emploi fait partie du produit et doit être conservé à proximité immédiate de la sonde à résistance et accessible à tout moment pour le personnel qualifié.

■ Le personnel qualifié doit, avant de commencer toute opération, avoir lu soigneusement et compris le mode d'emploi.

■ La responsabilité du fabricant n'est pas engagée en cas de dommages provoqués par une utilisation non conforme à l'usage prévu, de non respect de ce mode d'emploi, d'utilisation de personnel peu qualifié de même qu'en cas de modifications de la sonde à résistance effectuées par l'utilisateur.

■ Les conditions générales de vente mentionnées dans les documents de vente s'appliquent.

■ Sous réserve de modifications techniques.

■ Pour obtenir d'autres informations :
 - Consulter notre site internet : www.wika.fr
 - Fiche technique correspondante : TE 60.30, TE 60.31
 - Conseiller applications : Tel. : (+33) 1 343084-84
 E-Mail: info@wika.fr

Explication des symboles

AVERTISSEMENT !
… indique une situation présentant des risques susceptibles de provoquer la mort ou des blessures graves si elle n'est pas évitée.

ATTENTION !
… indique une situation potentiellement dangereuse et susceptible de provoquer de légères blessures ou des dommages matériels et pour l'environnement si elle n'est pas évitée.
1. Généralités / 2. Sécurité

Information
... met en exergue les conseils et recommandations utiles de même que les informations permettant d’assurer un fonctionnement efficace et normal.

DANGER !
... indique les dangers liés au courant électrique. Danger de blessures graves ou mortelles en cas de non respect des consignes de sécurité.

AVERTISSEMENT !
... indique une situation présentant des risques susceptibles de provoquer des brûlures dues à des surfaces ou liquides chauds si elle n'est pas évitée.

Abréviations

RTD anglais : "Resistance temperature detector"; les sondes à résistance

TC "Thermocouple"

2. Sécurité

AVERTISSEMENT !
Avant le montage, la mise en service et le fonctionnement, s’assurer que la sonde à résistance a été choisie de façon adéquate, en ce qui concerne la plage de mesure, la version, les conditions de mesure spécifiques et les pièces en contact avec le fluide adéquates (corrosion). Un non-respect de cette consigne peut entraîner des blessures corporelles graves et/ou des dégâts matériels.

Vous trouverez d’autres consignes de sécurité dans les sections individuelles du présent mode d'emploi.

2.1 Utilisation conforme à l'usage prévu
Les sondes à résistance de type TR30 et TR31 sont à usage général et permettent de mesurer des températures allant de -50 ... +150 °C (sans extension) et de -50 ... +250 °C (avec extension) dans un médium liquide et gazeux. Elles peuvent supporter des contraintes de pression allant jusqu’à 40 bar (modèles spéciaux jusqu’à 400 bar, en fonction de la longueur d'insertion et du diamètre).

L'instrument est conçu et construit exclusivement pour une utilisation conforme à l'usage prévu décrit ici et ne doit être utilisé qu'en conséquence.

Les spécifications techniques mentionnées dans ce mode d'emploi doivent être respectées. En cas d'utilisation inadéquate ou de fonctionnement de l'instrument en dehors
2. Sécurité

des spécifications techniques, un arrêt et contrôle doivent être immédiatement effectués par un collaborateur autorisé du service de WIKA.

Si l'instrument est transporté d'un environnement froid dans un environnement chaud, la formation de condensation peut provoquer un dysfonctionnement fonctionnel de l'instrument. Il est nécessaire d'attendre que la température de l'instrument se soit adaptée à la température ambiante avant une nouvelle mise en service.

Aucune réclamation ne peut être recevable en cas d'utilisation non conforme à l'usage prévu.

2.2 Qualification du personnel

AVERTISSEMENT !
Danger de blessure en cas de qualification insuffisante!
Une utilisation non conforme peut entraîner d'importants dommages corporels et matériels.

- Les opérations décrites dans ce mode d'emploi ne doivent être effectuées que par un personnel ayant la qualification décrite ci-après.
- Tenir le personnel non qualifié à l'écart des zones dangereuses.

Personnel qualifié

Le personnel qualifié est, en raison de sa formation spécialisée, de ses connaissances dans le domaine de la technique de mesure et de régulation et de ses expériences de même que de sa connaissance des prescriptions nationales des normes et directives en vigueur, en mesure d'effectuer les travaux décrits et de reconnaître automatiquement les dangers potentiels.

Les conditions d'utilisation spéciales exigent également une connaissance adéquate par exemple des liquides agressifs.

2.3 Dangers particuliers

AVERTISSEMENT !
Dans le cas de fluides de mesure dangereux comme notamment l'oxygène, l'acétylène, les substances combustibles ou toxiques, ainsi que dans le cas d'installations de réfrigération, de compresseurs etc., les directives appropriées existantes doivent être observées en plus de l'ensemble des règles générales.

AVERTISSEMENT !
Protection nécessaire contre les décharges électrostatiques (DES) !
L'utilisation conforme des surfaces de travail mises à la terre et des bracelets personnels est nécessaire lors des opérations effectuées avec des circuits ouverts (circuits imprimés) afin d'éviter une détérioration des composants électroniques sensibles due à une décharge électrostatique.
2. Sécurité

Afin de travailler en toute sécurité sur l'instrument, la société exploitante doit s’assurer

■ qu’un équipement de premier secours adapté est disponible et que les premiers soins peuvent être dispensés sur place à tout moment en cas de besoin,

■ que le personnel de service reçoit à intervalles réguliers des instructions relatives à toutes les questions pertinentes concernant la sécurité du travail, les premiers secours et la protection de l'environnement et qu’il connaît le mode d'emploi et particulièrement les consignes de sécurité contenues dans celui-ci.

DANGER !

Danger de mort lié au courant électrique
Danger de mort en cas de contact avec les pièces sous tension.

■ Le montage et le raccordement des appareils électriques ne doit être effectué que par un électricien qualifié.

■ En cas d'utilisation avec un instrument d'alimentation défectueux (par exemple court-circuit entre la tension du secteur et la tension de sortie), des tensions présentant un danger de mort peuvent apparaître sur l'indicateur de pression portable !

AVERTISSEMENT !

Les restes de fluides se trouvant dans les instruments démontés peuvent mettre en danger les personnes, l'environnement ainsi que l'installation. Prendre des mesures de sécurité suffisantes.

Ne pas utiliser cet instrument dans des dispositifs de sécurité ou d'arrêt d'urgence. Une utilisation incorrecte de l'instrument peut occasionner des blessures.

En cas d'erreur, des fluides agressifs peuvent être disponibles à une température extrême et sous une pression élevée ou sous vide au niveau du capteur de pression.

2.4 Etiquetage / Marquages de sécurité

Plaques signalétiques

■ Sonde à résistance type TR30
Explication des symboles

Lire impérativement le mode d'emploi avant le montage et la mise en service de l'instrument !

CE, Communauté Européenne
Les instruments avec ce marquage sont conformes aux directives européennes pertinentes.

3. Spécifications

3.1 Sonde à résistance type TR30

Signal de sortie Pt100, type TR30-P

Elément de mesure et insert de mesure
L'élément de mesure Pt100 est situé à l'extrémité du capteur de la sonde.

Signal de sortie Pt100, type TR30-P

<table>
<thead>
<tr>
<th>Plage de température</th>
<th>Etendue de mesure sans extension -50 ... +150 °C, avec extension -50 ... +250 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elément de mesure</td>
<td>Pt100 (courant de mesure : 0,1 ... 1,0 mA)</td>
</tr>
<tr>
<td>Type de raccordement</td>
<td>2 fils</td>
</tr>
<tr>
<td></td>
<td>3 fils</td>
</tr>
<tr>
<td></td>
<td>4 fils</td>
</tr>
<tr>
<td>Précision du capteur</td>
<td>Classe B</td>
</tr>
<tr>
<td>selon DIN EN 60751</td>
<td>Classe A</td>
</tr>
<tr>
<td>Raccordement électrique</td>
<td>Connecteur coudé DIN, forme A, M12 x 1 connecteur, 4 plots</td>
</tr>
</tbody>
</table>

Les indications en % se rapportent à la plage de mesure
Pour une détermination correcte de l'erreur de mesure globale, il convient de prendre en compte à la fois les déviations de mesure du capteur et du transmetteur.

1) Pour obtenir des spécifications détaillées sur les capteurs Pt100, voir l'information technique IN 00.17 sur www.wika.fr.
3. Spécifications

Signal de sortie 4 ... 20 mA, type TR30-W

Elément de mesure et insert de mesure

L'élément de mesure Pt100 est situé à l'extrémité du capteur de la sonde.

Le transmetteur 4 à 20 mA est monté et encapsulé dans le corps tubulaire de la sonde.

Signal de sortie 4 ... 20 mA, type TR30-W

<table>
<thead>
<tr>
<th>Spécification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plage de température</td>
<td>Etendue de mesure sans extension -50 ... +150 °C, avec extension -50 ... +250 °C, avec extension</td>
</tr>
<tr>
<td>Elément de mesure</td>
<td>Pt100 (courant de mesure : 0,5 mA)</td>
</tr>
<tr>
<td>Précision du capteur 1)</td>
<td>Classe B</td>
</tr>
<tr>
<td>selon DIN EN 60751</td>
<td></td>
</tr>
<tr>
<td>Intervalle de mesure</td>
<td>minimum 20 K, maximum 300 K</td>
</tr>
<tr>
<td>Configuration de base</td>
<td>Etendue de mesure 0 ... 150 °C, d'autres étendues de mesure sont réglables</td>
</tr>
<tr>
<td>Sortie analogique</td>
<td>4 ... 20 mA, 2 fils</td>
</tr>
<tr>
<td>Erreur de mesure 2)</td>
<td>0,2 % (transmetteur) 3)</td>
</tr>
<tr>
<td>selon DIN EN 60770, 23 °C ±5 K</td>
<td></td>
</tr>
<tr>
<td>Linéarisation</td>
<td>linéaire avec la température selon DIN EN 60751</td>
</tr>
<tr>
<td>Linéarisation d'erreur 4)</td>
<td>±0,1 % 4)</td>
</tr>
<tr>
<td>Retard au démarrage, électrique</td>
<td>< 10 ms</td>
</tr>
<tr>
<td>Signalement de la surchauffe du capteur 2)</td>
<td>Configurable : bas d'échelle NAMUR < 3,6 mA (typiquement 3 mA)</td>
</tr>
<tr>
<td></td>
<td>Haut d'échelle NAMUR > 21,0 mA (typiquement 23 mA)</td>
</tr>
<tr>
<td>Court-circuit capteur</td>
<td>Non configurable, en général bas d'échelle NAMUR < 3,6 mA (typ. 3 mA)</td>
</tr>
<tr>
<td>Charge RA 5)</td>
<td>RA ≤ (UB - 9 V) / 0,023 A avec RA en Ω et UB en V</td>
</tr>
<tr>
<td>Effet de charge 3)</td>
<td>± 0,05 % / 100 Ω</td>
</tr>
<tr>
<td>Alimentation</td>
<td>10 ... 35 VDC</td>
</tr>
<tr>
<td>Ondulation résiduelle max. admissible</td>
<td>10 % à 24 V / charge 300 Ω maxi</td>
</tr>
<tr>
<td>Entrée alimentation électrique 6)</td>
<td>geschützt gegen Verpolung</td>
</tr>
<tr>
<td>Effet de l'alimentation électrique 7)</td>
<td>± 0,025 % / V</td>
</tr>
<tr>
<td>Compatibilité électromagnétique (CEM) 8)</td>
<td>2004/108/CE, DIN EN 61326 émission (groupe 1, classe B) et immunité aux perturbations (domaine industriel) 5), ainsi que selon NAMUR NE21</td>
</tr>
<tr>
<td>Unités de température</td>
<td>configurables °C, °F, K</td>
</tr>
<tr>
<td>Données d'info</td>
<td>N° identification, description et message peuvent être stockés dans le transmetteur</td>
</tr>
<tr>
<td>Données de configuration et d'étalonnage</td>
<td>stockées en permanence dans l'EEPROM</td>
</tr>
<tr>
<td>Raccordement électrique</td>
<td>Connecteur coudé DIN, forme A, M12 x 1 connecteur, 4 plots</td>
</tr>
</tbody>
</table>

Les indications en % se rapportent à la plage de mesure

Pour une détermination correcte de l'erreur de mesure globale, il convient de prendre en compte à la fois les déviations de mesure du capteur et du transmetteur.

1) Pour obtenir des spécifications détaillées sur les capteurs Pt100, voir l'information technique IN 00.17 sur www.wika.fr.

2) C'est pourquoi le transmetteur de température doit être protégé des températures supérieures à 85 °C

3) Pour des intervalles de mesure inférieurs à 50 K plus 0,1 K

4) ± 0,2 % pour des plages de mesure avec une limite de début en dessous de 0 °C

5) Utiliser des sondes à résistance avec un câble blindé, et mettre le blindage à la terre à une extrémité du fil de sortie au moins, si les câbles sont longues de plus de 30 m ou sortent du bâtiment.
3. Spécifications

Diagramme de charge

![Diagramme de charge](image)

La charge admissible dépend de la tension d'alimentation de la boucle.

Pour régler les étendues de mesure, se référer au chapitre "7. Configuration des appareils de type TR30-W et TR31-W".

Signal de sortie 0 ... 10 V, type TR30-V

Elément de mesure et insert de mesure

L'élément de mesure Pt100 est situé à l'extrémité du capteur de la sonde. Le transmetteur 0 ... 10 V est monté dans le corps tubulaire de la sonde.

Signal de sortie 0 ... 10 V, type TR30-V

<table>
<thead>
<tr>
<th>Spécification</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plage de température</td>
<td>Etendue de mesure sans extension -50 ... +150 °C, avec extension -50 ... +200 °C ²), d'autres étendues de mesure ne sont pas réglables</td>
</tr>
<tr>
<td>Elément de mesure</td>
<td>Pt100 (courant de mesure : 0,5 mA)</td>
</tr>
<tr>
<td>Précision du capteur ¹) selon DIN EN 60751</td>
<td>Classe B</td>
</tr>
<tr>
<td>Intervalle de mesure</td>
<td>minimum 50 K, maximum 250 K</td>
</tr>
<tr>
<td>Configuration de base</td>
<td>Plage de mesure 0 ... 100 °C</td>
</tr>
<tr>
<td>Etendues de mesure</td>
<td>-50 ... +50, 0 ... 50, 0 ... 80, 0 ... 100, 0 ... 120, 0 ... 150, 0 ... 200 °C</td>
</tr>
<tr>
<td>Sortie analogique</td>
<td>0 ... 10 V, 3 fils</td>
</tr>
<tr>
<td>Niveau global de erreur de mesure ³)</td>
<td>< 0.5 % de l'échelle</td>
</tr>
<tr>
<td>Alimentation</td>
<td>12 ... 30 VDC</td>
</tr>
<tr>
<td>Ondulation résiduelle max. admissible</td>
<td>10 %</td>
</tr>
<tr>
<td>Compatibilité électromagnétique (CEM)</td>
<td>2004/108/CE, EN 61326 émission (groupe 1, classe B) et immunité d'interférence (application industrielle) ⁴)</td>
</tr>
<tr>
<td>Raccordement électrique</td>
<td>Connecteur coudé DIN, forme A, M12 x 1 connecteur, 4 plots</td>
</tr>
</tbody>
</table>

Les indications en % se rapportent à la plage de mesure

Pour une détermination correcte de l'erreur de mesure globale, il convient de prendre en compte à la fois les déviations de mesure du capteur et du transmetteur.

1) Pour obtenir des spécifications détaillées sur les capteurs Pt100, voir l'information technique IN 00.17 sur www.wika.fr.

2) C'est pourquoi le transmetteur de température doit être protégé des températures supérieures à 85 °C

3) Pour des intervalles de mesure inférieurs à 50 K plus 0,1 K

4) Utiliser des sondes à résistance avec un câble blindé, et mettre le blindage à la terre à une extrémité du fil de sortie au moins, si les câbles sont longues de plus de 30 m ou sortent du bâtiment.

Pour de plus amples spécifications sur le TR30, voir la fiche technique WIKA TE 60.30.
3. Spécifications

3.2 Sonde à résistance type TR31

Signal de sortie Pt100, type TR31-P

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plage de température</td>
<td>Étendue de mesure sans extension -50 ... +150 °C, avec extension -50 ... +250 °C</td>
</tr>
<tr>
<td>Elément de mesure</td>
<td>Pt100 (courant de mesure : 0,1 ... 1,0 mA)</td>
</tr>
<tr>
<td>Type de raccordement</td>
<td>3 fils</td>
</tr>
<tr>
<td>Précision du capteur 1) selon DIN EN 60751</td>
<td>Classe B</td>
</tr>
</tbody>
</table>

Signal de sortie 4 ... 20 mA, type TR31-W

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plage de température</td>
<td>Étendue de mesure sans extension -50 ... +150 °C, avec extension -50 ... +250 °C 2)</td>
</tr>
<tr>
<td>Elément de mesure</td>
<td>Pt100 (courant de mesure : env. 0,5 mA)</td>
</tr>
<tr>
<td>Type de raccordement</td>
<td>3 fils</td>
</tr>
<tr>
<td>Précision du capteur 1) selon DIN EN 60751</td>
<td>Classe B</td>
</tr>
<tr>
<td>Intervalle de mesure</td>
<td>minimum 20 K, maximum 300 K</td>
</tr>
<tr>
<td>Configuration de base</td>
<td>Étendue de mesure 0 ... 150 °C, d'autres étendues de mesure sont réglables</td>
</tr>
<tr>
<td>Sortie analogique</td>
<td>4 ... 20 mA, 2 fils</td>
</tr>
<tr>
<td>Ecart de mesure selon DIN EN 60770, 23 °C ± 5 K</td>
<td>0,2 % (transmetteur) 3)</td>
</tr>
<tr>
<td>Linéarisation</td>
<td>linéaire avec la température selon DIN EN 60751</td>
</tr>
<tr>
<td>Linéarisation d’erreur</td>
<td>±0,1 % 4)</td>
</tr>
<tr>
<td>Retard au démarrage, électrique</td>
<td>< 10 ms</td>
</tr>
<tr>
<td>Signalement de la surchauffe du capteur</td>
<td>Configurable : bas d'échelle NAMUR < 3,6 mA (typiquement 3 mA) Haut d'échelle NAMUR > 21,0 mA (typiquement 23 mA)</td>
</tr>
<tr>
<td>Court-circuit capteur</td>
<td>Non configurable, en général bas d'échelle NAMUR < 3,6 mA (typ. 3 mA)</td>
</tr>
<tr>
<td>Charge RA</td>
<td>$R_A \leq \frac{(U_B - 9 \text{ V})}{0,023 \text{ A}}$ avec R_A en Ω et U_B en V</td>
</tr>
<tr>
<td>Effet de charge</td>
<td>± 0,05 % / 100 Ω</td>
</tr>
<tr>
<td>Alimentation</td>
<td>10 ... 35 VDC</td>
</tr>
<tr>
<td>Ondulation résiduelle max. admissible</td>
<td>10 % à 24 V / charge 300 Ω maxi</td>
</tr>
<tr>
<td>Entrée alimentation électrique</td>
<td>protégée contre l'inversion de polarité</td>
</tr>
<tr>
<td>Effet de l'alimentation électrique</td>
<td>± 0,025 % / V</td>
</tr>
<tr>
<td>Compatibilité électromagnétique (CEM)</td>
<td>2004/108/CE, EN 61326 émission (groupe 1, classe B) et immunité d'interférence (application industrielle) 5)</td>
</tr>
<tr>
<td>Unités de température</td>
<td>configurables °C, °F, K</td>
</tr>
<tr>
<td>Données d’info</td>
<td>N° identification, description et message peuvent être stockés dans le transmetteur</td>
</tr>
<tr>
<td>Données de configuration et d'étalonnage</td>
<td>stockées en permanence dans l'EEPROM</td>
</tr>
<tr>
<td>Raccordement électrique</td>
<td>connecteur M12 x 1, 4 plots</td>
</tr>
</tbody>
</table>

Les indications en % se rapportent à la plage de mesure
Pour une détermination correcte de l'erreur de mesure globale, il convient de prendre en compte à la fois les déviations de mesure du capteur et du transmetteur.

1) Pour obtenir des spécifications détaillées sur les capteurs Pt100, voir l’information technique IN 00.17 sur www.wika.fr.
2) C’est pourquoi le transmetteur de température doit être protégé des températures supérieures à 85 °C
3) Pour des intervalles de mesure inférieurs à 50 K plus 0,1 K
4) ± 0,2 % pour des plages de mesure avec une limite de début en dessous de 0 °C
5) Utiliser des sondes à résistance avec un câble blindé, et mettre le blindage à la terre à une extrémité du fil de sortie au moins, si les câbles sont longues de plus de 30 m ou sortent du bâtiment.

Conditions ambiantes

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Température ambiante et de stockage</td>
<td>-40 ... +85 °C</td>
</tr>
<tr>
<td>Indice de protection</td>
<td>IP 67 CEI 529 / EN 60529</td>
</tr>
<tr>
<td></td>
<td>L'indice de protection mentionné n'est valable que lorsque le contre-connecteur auquel est raccordé la sonde de temp. possède également l'indice de protection requis.</td>
</tr>
<tr>
<td>Temps de réponse 6)</td>
<td>tₜ₀ < 3,3 s</td>
</tr>
<tr>
<td></td>
<td>t₉₀ < 9,7 s (pour diamètre gaine 6 mm)</td>
</tr>
<tr>
<td>Matériaux</td>
<td>Boîtier : acier inox 1.4571</td>
</tr>
<tr>
<td>Résistance aux vibrations</td>
<td>■ 3 g (DIN EN 60751, standard)</td>
</tr>
<tr>
<td></td>
<td>■ 20 g (DIN EN 60751, modèles spéciaux, pour une longueur d'insertion maximale de 160 mm, pas de raccords coulissants)</td>
</tr>
</tbody>
</table>

6) Mesure conforme à la norme DIN EN 60751 4.3.3

Pour de plus amples spécifications sur le TR31, voir la fiche technique WIKA TE 60.31.

4. Conception et fonction

4.1 Description

Les sondes à résistance TR30 et TR31 sont constituées d'une gaine avec un raccord de process fixe et sont vissées directement dans le process. Elles sont conçues de manière à résister aux chocs et vibrations, et tous les composants électriques sont protégés contre les éclaboussures. La résistance aux vibrations de la version standard correspond à la norme DIN EN 60751 (jusqu'à 3 g) ; les versions spéciales offrent une résistance allant jusqu'à 10 g. La résistance aux chocs correspond pour toutes les versions aux exigences de la norme DIN EN 60751. Le raccordement électrique est effectué au moyen d'un connecteur coudé DIN de forme A (TR30) ou d'un connecteur circulaire M12 x 1 (TR30, TR31).
4. Conception et fonction

4.2 Dimensions en mm

4.2.1 Sonde à résistance type TR30

- Raccord de process avec filetage parallèle (ou sans raccord process)

<table>
<thead>
<tr>
<th>Connecteur coudé DIN EN 175301-803</th>
<th>Connecteur circulaire à 4 broches M12 x 1</th>
<th>Version avec extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connecteur coudé</td>
<td>Connecteur circulaire à 4 broches M12 x 1</td>
<td>Version avec raccord coulissant</td>
</tr>
<tr>
<td>Version avec rétrein</td>
<td>Version sans raccord process</td>
<td>Version avec extension</td>
</tr>
</tbody>
</table>

Légende :
A A longueur (longueur d'insertion)
N Longueur totale extension (70 mm)
Ød Diamètre gaine

- Raccord de process avec filetage conique
4. Conception et fonction

4.2.2 Sonde à résistance type TR31

■ Raccord de process avec filetage parallèle (ou sans raccord process)

■ Raccord de process avec filetage conique

4.3 Détail de la livraison
Comparer le détail de la livraison avec le bordereau de livraison.
5. Transport, emballage et stockage / 6. Mise en service, ...

5. Transport, emballage et stockage

5.1 Transport
Vérifier s’il existe des dégâts sur l’instrument liés au transport.
Communiquer immédiatement les dégâts constatés.

5.2 Emballage
N’enlever l’emballage qu’avant le montage.
Conserver l’emballage, celui-ci offre, lors d’un transport, une protection optimale (par ex.
changement de lieu d’utilisation, renvoi pour réparation).

5.3 Stockage

Conditions admissibles sur le lieu de stockage :
■ Température de stockage : 0 ... 70 °C
■ Humidité : 35 ... 85 % humidité relative (pas de formation de rosée)

Eviter les influences suivantes :
■ Lumière solaire directe ou proximité d’objets chauds
■ Vibrations mécaniques, chocs mécaniques (mouvements brusques en le posant)
■ Suie, vapeur, poussière et gaz corrosifs

Conserver l’instrument dans l’emballage original dans un endroit qui satisfait aux conditions susmentionnées. Si l’emballage original n’est pas disponible, emballer et stocker l’instrument comme suit :
1. Emballer l’instrument dans une feuille de plastique antistatique.
2. Placer l’instrument avec le matériau isolant dans l’emballage.
3. En cas de stockage long (plus de 30 jours), mettre également un sachet absorbeur
 d’humidité dans l’emballage.

AVIS !
Enlever tous les restes de fluides adhérents avant l’entreposage de l’instrument (après le fonctionnement). Ceci est particulièrement important lorsque le fluide représente un danger pour la santé, comme p. ex. des substances corrosives, toxiques, carcinogènes, radioactives etc.

6. Mise en service, exploitation

AVIS !
Il convient d’éviter les contraintes mécaniques sur les raccordements électriques
ou sur les boîtiers. Les températures maximales de -50 ... +150 °C (sans extension) et -50 ... +250 °C ou -50 ... +200 °C pour TR30-V (avec extension) ne doivent pas être dépassées. L’accès aux raccordements ne doit être effectué que lorsque l’appareil n’est plus sous pression et qu’il est suffisamment refroidi.
6. Mise en service, exploitation

6.1 Montage
Ces sondes à résistance sont conçues de manière à être vissées directement dans le process. La longueur d'insertion ainsi que la vitesse de débit et la viscosité du fluide process peuvent réduire la charge maximale exercée sur la gaine.

Installation exemples

Pour obtenir des informations relatives sur les trous de vissage, veuillez vous référer à la norme DIN 3852, ou ANSI B 1.20 pour les filetage NPT.

6.2 Raccordement électrique

■ Signal de sortie Pt100, type TR30-P

Connecteur coudé DIN EN 175301-803, forme A

Connecteur M12 x 1, 4-plots
6. Mise en service, exploitation

- Signal de sortie 4 ... 20 mA, type TR30-W
 - Connecteur coudé DIN EN 175301-803, forme A

- Signal de sortie 0 ... 10 V, type TR30-V
 - Connecteur coudé DIN EN 175301-803, forme A

- Signal de sortie Pt100, type TR31-P
 - Connecteur M12 x 1, 4-plots

- Signal de sortie 4 ... 20 mA, type TR31-W
 - Connecteur M12 x 1, 4-plots
Version avec connecteur coudé (DIN EN 175301-803)
Pour des conducteurs de câble, nous recommandons d’utiliser des embouts à sertir.

Pour garantir l’indice de protection IP 65 :
■ Toujours utiliser les joints en silicone
■ Serrer la vis de verrouillage
■ Réaliser minutieusement l’entrée de câble

6.3 Réglage de la plage de mesure pour l'appareil TR30-V
Combinaisons possibles pour le début et la fin de la plage de mesure :
Valeurs de début du transmetteur : 0 °C, -20 °C, -50 °C
Valeurs de fin de transmetteur : +50 °C, +100 °C, +120 °C, +150 °C, +200 °C, +250 °C

Attention :
La plage de mesure est préréglée en usine et ne peut pas être modifiée.
L’intervalle de la plage de mesure est de :
Maximum 250 K
Minimale 50 K
Exemple avec extension : -50 ... +200 °C ou 0 ... +250 °C.

7. Configuration du types TR30-W et TR31-W
La configuration est effectuée au moyen d’une interface USB avec PC via l'unité de programmation de l'appareil PU-448 (accessoires, code article 11606304).
Le raccordement avec la sonde est effectué au moyen d’un câble adaptateur approprié.
■ Accessoires, connecteur circulaire M12 x 1 : code article 14003193
■ Accessoires, connecteur coudé DIN : code article 14005324
La plage de mesure, la signalisation et d’autres paramètres peuvent également être configurés ; voir logiciel de configuration.

■ Facile à utiliser
■ Affichage d’état par DEL
■ Version compacte
■ Maintenant, plus besoin d’alimentation électrique supplémentaire pour l’unité de programmation ou pour le transmetteur.
■ Il est possible de mesurer le courant de ligne des sondes à résistance
Le début de la plage de mesure peut être configuré entre -50 ... +150 °C. La fin possible de la plage de mesure dépend du début de chaque plage. Combinaisons possibles pour le début et la fin de la plage de mesure, se référer au diagramme. Pour donner une vue d’ensemble, cette relation de dépendance est représentée à titre d’exemple par pas de 50 °C dans ce diagramme. Le logiciel de configuration contrôle la plage de mesure souhaitée et accepte uniquement les valeurs admissibles. Il est possible de configurer des valeurs intermédiaires ; l’incrément le plus petit est de 0,1 °C. Les sondes sont livrées avec une configuration de base (0 ... +150 °C, bas d’échelle) ou sont configurées selon les souhaits du client dans les limites des possibilités de configuration.

En cas de configuration conforme aux souhaits du client, la plage de mesure est indiquée clairement sur la plaque signalétique de l’appareil. La configuration et les possibilités de sélection des paramètres sont décrites dans le logiciel de configuration piloté par menu. Il est recommandé de noter toute modification au moyen d’un feutre à encre indélébile sur la plaque signalétique.

Combinaisons possibles pour le début et la fin de la plage de mesure

La fin de la plage de mesure dépend du début de chaque plage. Pour donner une vue d’ensemble, cette relation de dépendance est représentée à titre d’exemple par pas de 50 °C dans ces diagrammes. Le logiciel de configuration contrôle la plage de mesure souhaitée et accepte uniquement les valeurs admissibles. Il est possible de configurer des valeurs intermédiaires ; l’incrément le plus petit est de 0,1 °C.

Diagramme pour étendues de mesure de l’appareil TR30-W

<table>
<thead>
<tr>
<th>Fins possibles de l’étendue de mesure en °C</th>
<th>Étendue de mesure en °C</th>
<th>Attention :</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50 °C</td>
<td>-50 ... -20</td>
<td>La plage de mesure de la sonde est limitée par la plage d’application de l’élément de mesure, et non par la plage de réglage du transmetteur. sans extension -50 ... +150 °C avec extension -50 ... +250 °C</td>
</tr>
</tbody>
</table>
8. Raccordement de l’unité de programmation PU-448

Câble adaptateur pour connecteur M12
(types TR30-W et TR31 sonde à résistance)

Connexion PU-448 ↔ câble adaptateur avec connecteur M12

Câble adaptateur pour connecteur DIN, forme A
(type TR30-W sonde à résistance)

Connexion PU-448 ↔ câble adaptateur avec connecteur angulaire DIN forme A
9. Entretien et nettoyage

9.1 Entretien
Les sondes à résistance décrites dans ce document ne nécessitent pas de maintenance et ne comportent aucun composant devant faire l'objet d'une réparation ou d'un échange.

9.2 Nettoyage

ATTENTION !
- Avant le nettoyage, il est impératif de mettre l'instrument hors pression, de le mettre hors circuit et de le séparer du secteur.
- Nettoyer l'instrument avec un chiffon humide.
- Éviter tout contact des raccordements électriques avec l'humidité.
- Laver ou nettoyer l'instrument démonté avant de le renvoyer pour protéger le personnel et l'environnement contre l'exposition à des restes de fluides.
- Les restes de fluides se trouvant dans les instruments démontés peuvent mettre en danger les personnes, l'environnement ainsi que l'installation. Prendre des mesures de sécurité suffisantes.

Indications concernant le retour de l'instrument, voir chapitre "10.2 Retours".

10. Démontage, retour et mise au rebut

AVERTISSEMENT !
Les restes de fluides se trouvant dans les instruments démontés peuvent mettre en danger les personnes, l'environnement ainsi que l'installation. Prendre des mesures de sécurité suffisantes.

10.1 Démontage

AVERTISSEMENT !
Danger de brûlure !
Avant le démontage, laisser refroidir suffisamment l'instrument !
Danger de brûlure lié à la sortie de fluides dangereux chauds.

Déconnecter la sonde à résistance uniquement une fois que le système a été mis hors pression.
10. Démontage, retour et mise au rebut

10.2 Retour

AVERTISSEMENT!
En cas d'envoi de l'instrument, il faut respecter impérativement ceci :
Tous les instruments envoyés à WIKA doivent être exempt de toute
substance dangereuse (acides, lixiviats, solutions, etc.).

Pour retourner l'instrument, utiliser l'emballage original ou un emballage adapté pour le
transport.

Pour éviter des dommages :
1. Emballer l'instrument dans une feuille de plastique antistatique.
2. Placer l'instrument avec le matériau isolant dans l'emballage.
 Isoler de manière uniforme tous les côtés de la boîte d'expédition.
3. Mettre si possible un sachet absorbeur d'humidité dans l'emballage.
4. Indiquer lors de l'envoi qu'il s'agit d'un instrument de mesure très sensible à transporter.

Joindre le formulaire de retour rempli à l'instrument.

Le formulaire de retour est disponible sur internet :
www.wika.fr / Service / Retour

10.3 Mise au rebut
Une mise au rebut inadéquate peut entraîner des dangers pour l'environnement.

Eliminer les composants des instruments et les matériaux d'emballage conformément
aux prescriptions nationales pour le traitement et l'élimination des déchets et aux lois de
protection de l'environnement en vigueur.
Annexe 1 : Déclaration de conformité CE type TR31-W

Déclaration de Conformité CE

Document No.: 14011511.01

Nous déclarons sous notre seule responsabilité que les appareils marqués CE

Type: TR31-W*

Description: Thermomètre à résistance type TR31, version miniature

selon fiche technique valides: TE 60.31

sont conformes aux exigences essentielles de sécurité de la (les) directive(s):

2004/108/CE (CEM)

Les appareils ont été vérifiés suivant les normes:

EN 61326-1:2006
EN 61326-2-3:2006

Signé à l’intention et au nom de / Firmado en nombre y por cuenta de

WIKA Alexander Wiegand SE & Co. KG
Klingenberg, 2011-05-04

Ressort / División de la compañía: MP-TM

Jürgen Schüssler
Signature, autorisée par l’entreprise / Firma autorizada por el emisor

Matthias Rau

Declaración de Conformidad CE

Documento N°: 14011511.01

Declaramos bajo nuestra sola responsabilidad, que los equipos marcados CE

Modelo: TR31-W*

Descripción: Termorresistencia modelo TR31, en versión miniatura

según fichas técnicas en vigor: TE 60.31

cumplen con los requerimientos esenciales de seguridad de las Directivas:

2004/108/CE (CEM)

Los dispositivos han sido verificados de acuerdo a las normas:

EN 61326-1:2006
EN 61326-2-3:2006

Management de la calidad / Gestión de calidad: MP-TM

Matthias Rau
<table>
<thead>
<tr>
<th>Contenido</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Información general</td>
<td>68</td>
</tr>
<tr>
<td>2. Seguridad</td>
<td>69</td>
</tr>
<tr>
<td>3. Datos técnicos</td>
<td>72</td>
</tr>
<tr>
<td>4. Diseño y función</td>
<td>76</td>
</tr>
<tr>
<td>5. Transporte, embalaje y almacenamiento</td>
<td>79</td>
</tr>
<tr>
<td>6. Puesta en servicio, funcionamiento</td>
<td>79</td>
</tr>
<tr>
<td>7. Configuración de los modelos TR30-W, TR31-W</td>
<td>82</td>
</tr>
<tr>
<td>8. Conectar la unidad de programación PU-448</td>
<td>84</td>
</tr>
<tr>
<td>9. Mantenimiento y limpieza</td>
<td>85</td>
</tr>
<tr>
<td>10. Desmontaje, devolución y eliminación</td>
<td>85</td>
</tr>
<tr>
<td>Anexo 1: Declaración CE de conformidad modelo TR31-W</td>
<td>65</td>
</tr>
</tbody>
</table>

Declaraciones de conformidad puede encontrar en www.wika.es.
1. Información general

La termorresistencia descrita en el manual de instrucciones está construida y fabricada según los últimos conocimientos. Todos los componentes están sujetos a criterios estrictos de calidad y medio ambiente durante la producción. Nuestros sistemas de gestión están certificados según ISO 9001 e ISO 14001.

Este manual de instrucciones proporciona indicaciones importantes sobre del manejo de la termorresistencia. Para que el trabajo con este instrumento sea seguro es imprescindible cumplir con todas las instrucciones de seguridad y manejo indicadas.

Observar las normativas sobre prevención de accidentes y las normas de seguridad en vigor en el lugar de utilización de la termorresistencia.

El manual de instrucciones es una parte integrante del instrumento y debe guardarse en la proximidad del mismo para que el personal especializado pueda consultarlo en cualquier momento.

El personal especializado debe haber leído y entendido el manual de instrucciones antes de comenzar cualquier trabajo.

El fabricante queda exento de cualquier responsabilidad en caso de daños causados por un uso no conforme a la finalidad prevista, la inobservancia del presente manual de instrucciones, un manejo por personal insuficientemente cualificado así como una modificación no autorizada de la termorresistencia.

Se aplican las condiciones generales de venta incluidas en la documentación de venta.

Modificaciones técnicas reservadas.

Para obtener más informaciones consultar:

- Página web: www.wika.es
- Hoja técnica correspondiente: TE 60.30, TE 60.31
- Servicio técnico: Tel.: (+34) 933 938-630
 E-Mail: info@wika.es

Explicación de símbolos

¡ADVERTENCIA!
... indica una situación probablemente peligrosa que pueda causar la muerte o lesiones graves si no se evita.

¡CUIDADO!
... indica una situación probablemente peligrosa que pueda causar lesiones leves o medianas o daños materiales y medioambientales si no se evita.

Información
... destaca consejos y recomendaciones útiles así como informaciones para una utilización eficaz y libre de fallos.
¡PELGRO!
... indica riesgos causados por corriente eléctrica. Hay un riesgo de lesiones graves o mortales si no se observan estas indicaciones de seguridad.

¡ADVERTENCIA!
... indica una situación probablemente peligrosa que pueda causar quemaduras debido a superficies o líquidos calientes, si no se evita.

Abreviaturas
RTD inglés: "Resistance temperature detector"; termorresistencia
TC inglés: "Thermocouple"; termopar

2. Seguridad

¡ADVERTENCIA!
Antes del montaje, la puesta en servicio y el funcionamiento asegurarse de que se haya seleccionado la termorresistencia adecuada con respecto a rango de medida, versión, condiciones de medición específicas y material adecuado para el contacto con el medio (corrosión). El no respetar las instrucciones puede generar lesiones graves y/o daños materiales.

Los distintos capítulos de este manual de instrucciones contienen otras importantes indicaciones de seguridad.

2.1 Uso conforme a lo previsto
Las termorresistencias modelos TR30 y TR31 se emplean como termómetros universales para medición de temperaturas de entre -50 ... +150 °C (sin cuello) y -50 ... +250 °C (con cuello) en medios líquidos y gaseosos. Son utilizables para presiones de hasta 40 bar (formas especiales hasta 400 bar, dependiendo de la longitud de montaje y del diámetro).

El instrumento ha sido diseñado y construido únicamente para la finalidad aquí descrita y debe utilizarse en conformidad a la misma.

Cumplir las especificaciones técnicas de este manual de instrucciones. Un manejo no apropiado o una utilización del instrumento no conforme a las especificaciones técnicas requiere la inmediata puesta fuera de servicio y la comprobación por parte de un técnico autorizado por WIKA.
2. Seguridad

Si se cambia el instrumento de un ambiente frío a uno caliente, puede producirse un fallo de funcionamiento en el mismo. En tal caso, hay que esperar que la temperatura del instrumento se adapte a la temperatura ambiente antes de ponerlo nuevamente en funcionamiento.

No se admite ninguna reclamación debido a un manejo no adecuado.

2.2 Cualificación del personal

¡ADVERTENCIA!
¡Riesgo de lesiones debido a una insuficiente cualificación!
Un manejo no adecuado puede causar considerables daños personales y materiales.
- Las actividades descritas en este manual de instrucciones deben realizarse únicamente por personal especializado con la consiguiente cualificación.
- Mantener alejado a personal no cualificado de las zonas peligrosas.

Personal especializado
Debido a su formación profesional, a sus conocimientos de la técnica de regulación y medición así como a su experiencia y su conocimiento de las normativas, normas y directivas vigentes en el país de utilización el personal especializado es capaz de ejecutar los trabajos descritos y reconocer posibles peligros por sí solo.

Algunas condiciones de uso específicas requieren conocimientos adicionales, p. ej. acerca de medios agresivos.

2.3 Riesgos específicos

¡ADVERTENCIA!
En el caso de sustancias peligrosas a medir, como p. ej. oxígeno, acetileno, sustancias inflamables o tóxicas, así como en instalaciones de refrigeración, compresores, etc., deben observarse en cada caso, además de todas las reglas generales, las disposiciones pertinentes.

¡ADVERTENCIA!
¡Es imprescindible una protección contra descarga electrostática (ESD)! La utilización apropiada de superficies de trabajo conectadas a tierra y de pulseras individuales es imprescindible para trabajos en circuitos abiertos (placas de circuitos impresos), para evitar daños a componentes electrónicos sensibles causados por descarga electrostática.
2. Seguridad

Para realizar un trabajo seguro en el instrumento, el propietario debe asegurarse de que

- esté disponible un kit de primeros auxilios y que siempre esté presente ayuda en caso necesario.
- los operadores reciban periódicamente instrucciones, sobre todos los temas referidos a seguridad de trabajo, primeros auxilios y protección del medio ambiente, y conozcan además el manual de instrucciones y en particular las instrucciones de seguridad del mismo.

¡PELIGRO!
Peligrro de muerte por corriente eléctrica
Hay peligro directo de muerte al tocar piezas bajo tensión.
- La instalación y el montaje del instrumento eléctrico deben estar exclusivamente a cargo de un electricista cualificado.
- ¡La operación con una fuente de alimentación defectuosa (p. ej. cortocircuito de la tensión de red a la tensión de salida), puede provocar tensiones letales en la cercanía del instrumento!

¡ADVERTENCIA!
Restos de medios en instrumentos desmontados pueden causar riesgos para personas, medio ambiente e instalación.
Tomar adecuadas medidas de precaución.

No utilizar este instrumento en sistemas de seguridad o dispositivos de parada de emergencia. Una utilización incorrecta del instrumento puede causar lesiones.

En caso de fallo es posible que haya medios agresivos con temperaturas extremas o de bajo presión o que haya un vacío en el instrumento.

2.4 Rótulos / Marcados de seguridad

Placas de características
- Termorresistencia, modelo TR30
Explicación de símbolos

¡Es absolutamente necesario leer el manual de instrucciones antes del montaje y la puesta en servicio del instrumento!

CE, Communauté Européenne
Los instrumentos con este marcase cumplen las directivas europeas aplicables.

3. Datos técnicos

3.1 Termorresistencia, modelo TR30

Señal de salida Pt100, modelo TR30-P

El elemento de medición y unidad de medida

El elemento de medición Pt100 se encuentra en la punta de la sonda del termómetro.

<table>
<thead>
<tr>
<th>Señal de salida Pt100, modelo TR30-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rango de temperatura</td>
</tr>
<tr>
<td>Rango de medida sin cuello -50 ... +150 °C, con cuello -50 ... +250 °C</td>
</tr>
<tr>
<td>Elemento de medición</td>
</tr>
<tr>
<td>Pt100 (corriente de medición: 0,1 ... 1,0 mA)</td>
</tr>
<tr>
<td>Tipo de conexi?nado</td>
</tr>
<tr>
<td>2 hilos</td>
</tr>
<tr>
<td>3 hilos</td>
</tr>
<tr>
<td>4 hilos</td>
</tr>
<tr>
<td>Desviación límite del elemento de medida 1) según DIN EN 60751</td>
</tr>
<tr>
<td>Clase B</td>
</tr>
<tr>
<td>Clase A</td>
</tr>
<tr>
<td>Conexión eléctrica</td>
</tr>
<tr>
<td>Conector angular DIN forma A, M12 x 1 conector circular de 4 polos</td>
</tr>
</tbody>
</table>

Indicaciones en % están relacionados al span de medición
Para la determinación de la desviación total de medición deben considerarse la desviación de medición del sensor y la del transmisor.

1) Para consultar más detalles acerca de las sondas Pt100 véase la información técnica IN 00.17 en www.wika.es.
3. Datos técnicos

Señal de salida 4 ... 20 mA, modelo TR30-W

Elemento de medición y unidad de medida
El elemento de medición Pt100 se encuentra en la punta de la sonda del termómetro.
El transmisor de 4 ... 20 mA está encapsulado en el tubo del termómetro.

Señal de salida 4 ... 20 mA, modelo TR30-W

<table>
<thead>
<tr>
<th>Rango de temperatura</th>
<th>Rango de medida sin cuello -50 ... +150 °C, con cuello -50 ... +250 °C</th>
<th>2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elemento de medición</td>
<td>Pt100 (corriente de medición: 0,5 mA)</td>
<td></td>
</tr>
<tr>
<td>Desviación límite del elemento de medida 1) según DIN EN 60751</td>
<td>Clase B</td>
<td></td>
</tr>
<tr>
<td>Span de medida</td>
<td>min. 20 K, máx. 300 K</td>
<td></td>
</tr>
<tr>
<td>Configuración básica</td>
<td>Rango de medida 0 ... 150 °C, otros rangos de medida pueden ajustarse</td>
<td></td>
</tr>
<tr>
<td>Salida analógica</td>
<td>4 ... 20 mA, técnica de 2 hilos</td>
<td></td>
</tr>
<tr>
<td>Error de medición según DIN EN 60770, 23 °C ±5 K</td>
<td>0,2 % (transmisor) 3)</td>
<td></td>
</tr>
<tr>
<td>Linealización</td>
<td>Linealización de temperatura según DIN EN 60751</td>
<td></td>
</tr>
<tr>
<td>Error de linealización</td>
<td>±0,1 % 4)</td>
<td></td>
</tr>
<tr>
<td>Retardo de conexión, eléctrico</td>
<td>< 10 ms</td>
<td></td>
</tr>
<tr>
<td>Señalización de la ruptura de la sonda</td>
<td>Configurable: NAMUR mínimo < 3,6 mA (típico 3 mA) NAMUR máximo > 21,0 mA (típico 23 mA)</td>
<td></td>
</tr>
<tr>
<td>Cortocircuito de la sonda</td>
<td>No configurable: generalmente NAMUR mínimo < 3,6 mA (típ. 3 mA)</td>
<td></td>
</tr>
<tr>
<td>Carga R_A</td>
<td>R_A ≤ (UB - 9V) / 0,023 A con R_A en Ω y UB en V</td>
<td></td>
</tr>
<tr>
<td>Influencia de la carga</td>
<td>± 0,05 % / 100 Ω</td>
<td></td>
</tr>
<tr>
<td>Alimentación auxiliar</td>
<td>DC 10 ... 35 V</td>
<td></td>
</tr>
<tr>
<td>Ondulación residual máx. admisible</td>
<td>10 % con 24 V / carga máx. de 300 Ω</td>
<td></td>
</tr>
<tr>
<td>Entrada de la energía auxiliar</td>
<td>Protección contra polaridad inversa</td>
<td></td>
</tr>
<tr>
<td>Influencia de la alimentación auxiliar</td>
<td>± 0,025 % / V</td>
<td></td>
</tr>
<tr>
<td>Compatibilidad electromagnética (CEM)</td>
<td>2004/108/CE, DIN EN 61326 Emisión (Grupo 1, Clase B) y resistencia a interferencias (ámbito industrial) 5) y NAMUR NE21</td>
<td></td>
</tr>
<tr>
<td>Unidades de temperatura</td>
<td>configurables: °C, °F, °K</td>
<td></td>
</tr>
<tr>
<td>Datos informativos</td>
<td>Nº TAG, descriptor y mensaje pueden guardarse en el transmisor</td>
<td></td>
</tr>
<tr>
<td>Datos de configuración y calibración</td>
<td>Permanentemente guardados en EEPROM</td>
<td></td>
</tr>
<tr>
<td>Conexión eléctrica</td>
<td>Conector angular DIN forma A, M12 x 1 conector circular de 4 polos</td>
<td></td>
</tr>
</tbody>
</table>

Indicaciones en % están relacionados al span de medición
Para la determinación de la desviación total de medición deben considerarse la desviación de medición del sensor y la del transmisor.

1) Para consultar más detalles acerca de las sondas Pt100 véase la información técnica IN 00.17 en www.wika.es.
2) Proteger el transmisor de temperatura de temperaturas superiores a 85 °C.
3) Para margenes de medición inferiores a 50 K adicionalemente 0,1 K
4) ± 0,2 % para valor inicial de rango de medida inferior a 0 °C
5) Utilizar la termorresistencia con un cable blindado y poner a tierra el blindaje en un lado del cable como mínimo si los cables tienen una longitud superior a 30 m o si salen del edificio.
3. Datos técnicos

Diagrama de cargas

La carga admisible depende de la tensión del bucle de alimentación.

Para ajustes de los rangos de medida véase el capítulo "7. Configuración de los modelos TR30-W, TR31-W".

■ Señal de salida 0 ... 10 V, modelo TR30-V

Elemento de medición y unidad de medida

El elemento de medición Pt100 se encuentra en la punta de la sonda del termómetro.

El transmisor de 0 ... 10 V está encapsulado en el tubo del termómetro.

Señal de salida 0 ... 10 V, modelo TR30-V

<table>
<thead>
<tr>
<th>Rango de temperatura</th>
<th>Rango de medida sin cuello -50 ... +150 °C, con cuello -50 ... +200 °C 2), los rangos de medida no son ajustables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elemento de medición</td>
<td>Pt100 (corriente de medición: 0,5 mA)</td>
</tr>
<tr>
<td>Desviación límite del elemento de medida 1) según DIN EN 60751</td>
<td>Clase B</td>
</tr>
<tr>
<td>Span de medida</td>
<td>mín. 50 K, máx. 250 K</td>
</tr>
<tr>
<td>Configuración básica</td>
<td>Rango de medida 0 ... 100 °C</td>
</tr>
<tr>
<td>Rangos de medida</td>
<td>-50 ... +50, 0 ... 50, 0 ... 80, 0 ... 100, 0 ... 120, 0 ... 150, 0 ... 200 °C</td>
</tr>
<tr>
<td>Salida analógica</td>
<td>0 ... 10 V, técnica de 3 hilos</td>
</tr>
<tr>
<td>Error total de medición 3)</td>
<td>< 0,5 % del alcance</td>
</tr>
<tr>
<td>Alimentación auxiliar</td>
<td>DC 12 ... 30 V</td>
</tr>
<tr>
<td>Ondulación residual máx. admisible</td>
<td>10 %</td>
</tr>
<tr>
<td>Compatibilidad electromagnética (CEM)</td>
<td>2004/108/CE, EN 61326 Emisión (Grupo 1, Clase B) y resistencia a interferencias (ámbito industrial) 4)</td>
</tr>
<tr>
<td>Conexión eléctrica</td>
<td>Conector angular DIN forma A, M12 x 1 conector circular de 4 polos</td>
</tr>
</tbody>
</table>

Indicaciones en % están relacionados al span de medición

Para la determinación de la desviación total de medición deben considerarse la desviación de medición del sensor y la del transmisor.

1) Para consultar más detalles acerca de las sondas Pt100 véase la información técnica IN 00.17 en www.wika.es.
2) Proteger el transmisor de temperatura de temperaturas superiores a 85 °C.
3) Para margenes de medición inferiores a 50 K adicionalmente 0,1 K
4) Utilizar la termorresistencia con un cable blindado y poner a tierra el blindaje en un lado del cable como mínimo si los cables tienen una longitud superior a 30 m o si salen del edificio.

Para más datos técnicos del TR30 véase la hoja técnica de WIKA TE 60.30.
3. Datos técnicos

3.2 Termorresistencia modelo TR31

Señal de salida Pt100, modelo TR31-P

<table>
<thead>
<tr>
<th>Característica</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rango de temperatura</td>
<td>Rango de medida sin cuello -50 ... +150 °C, con cuello -50 ... +250 °C</td>
</tr>
<tr>
<td>Elemento de medición</td>
<td>Pt100 (corriente de medición: 0,1 ... 1,0 mA)</td>
</tr>
<tr>
<td>Tipo de conexionado</td>
<td>3 hilos</td>
</tr>
<tr>
<td>Desviación límite del elemento de medida 1) según DIN EN 60751</td>
<td>Clase B</td>
</tr>
<tr>
<td></td>
<td>4 hilos</td>
</tr>
</tbody>
</table>

Señal de salida 4 ... 20 mA, modelo TR31-W

<table>
<thead>
<tr>
<th>Característica</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rango de temperatura</td>
<td>Rango de medida sin cuello -50 ... +150 °C, con cuello -50 ... +250 °C 2)</td>
</tr>
<tr>
<td>Elemento de medición</td>
<td>Pt100 (corriente de medición: aprox. 0,5 mA)</td>
</tr>
<tr>
<td>Tipo de conexionado</td>
<td>3 hilos</td>
</tr>
<tr>
<td>Desviación límite del elemento de medida 1) 3) según DIN EN 60751</td>
<td>Clase B</td>
</tr>
<tr>
<td></td>
<td>Clase A</td>
</tr>
<tr>
<td>Span de medida</td>
<td>min. 20 K, máx. 300 K</td>
</tr>
<tr>
<td>Configuración básica</td>
<td>Rango de medida 0 ... 150 °C, otros rangos de medida pueden ajustarse</td>
</tr>
<tr>
<td>Salida analógica</td>
<td>4 ... 20 mA, técnica de 2 hilos</td>
</tr>
<tr>
<td>Desviación según DIN EN 60770, 23 °C ±5 K</td>
<td>0,2 % (transmisor) 3)</td>
</tr>
<tr>
<td>Linealización</td>
<td>Linealización de temperatura según DIN EN 60751</td>
</tr>
<tr>
<td>Error de linealización</td>
<td>± 0,1 % 4)</td>
</tr>
<tr>
<td>Retardo de conexión, eléctrico</td>
<td>< 10 ms</td>
</tr>
<tr>
<td>Señalización de la ruptura de la sonda</td>
<td>Configurable: NAMUR mínimo < 3,6 mA (típico 3 mA) NAMUR máximo > 21,0 mA (típico 23 mA)</td>
</tr>
<tr>
<td>Cortocircuito de la sonda</td>
<td>No configurable: generalmente NAMUR mínimo < 3,6 mA (típ. 3 mA)</td>
</tr>
<tr>
<td>Carga RA</td>
<td>RA ≤ (UB - 9 V) / 0,023 A con RA en Ω y UB en V</td>
</tr>
<tr>
<td>Influencia de la carga</td>
<td>± 0,05 % / 100 Ω</td>
</tr>
<tr>
<td>Alimentación auxiliar</td>
<td>DC 10 ... 35 V</td>
</tr>
<tr>
<td>Ondulación residual máx. admisible</td>
<td>10 % con 24 V / carga máx. de 300 Ω</td>
</tr>
<tr>
<td>Entrada de la energía auxiliar</td>
<td>Protección contra polaridad inversa</td>
</tr>
<tr>
<td>Influencia de la alimentación auxiliar</td>
<td>± 0,025 % / V</td>
</tr>
<tr>
<td>Compatibilidad electromagnética (CEM)</td>
<td>2004/108/CE, EN 61326 Emisión (Grupo 1, Clase B) y resistencia a interferencias (ámbito industrial) 5)</td>
</tr>
<tr>
<td>Unidades de temperatura</td>
<td>configurables: °C, °F, °K</td>
</tr>
<tr>
<td>Datas informativos</td>
<td>N° TAG, descriptor y mensaje pueden guardarse en el transmisor</td>
</tr>
<tr>
<td>Datos de configuración y calibración</td>
<td>Permanentemente guardados en EEPROM</td>
</tr>
<tr>
<td>Conexión eléctrica</td>
<td>Conector circular M12 x 1, 4-pin</td>
</tr>
</tbody>
</table>

Indicaciones en % están relacionados al span de medición; Para la determinación de la desviación total de medición deben considerarse la desviación de medición del sensor y la del transmisor.

1) Para consultar más detalles acerca de las sondas Pt100 véase la información técnica IN 00.17 en www.wika.es.
2) Proteger el transmisor de temperatura de temperaturas superiores a 85 °C.
3) Para margenes de medición inferiores a 50 K adicionally 0,1 K
4) ± 0,2 % para valor inicial de rango de medida inferior a 0 °C
5) Utilizar la termorresistencia con un cable blindado y poner a tierra el blindaje en un lado del cable como mínimo si los cables tienen una longitud superior a 30 m o si salen del edificio.
3. Datos técnicos / 4. Diseño y función

Condiciones externas

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura ambiental y de almacenamiento</td>
<td>-40 … +85 °C</td>
</tr>
</tbody>
</table>
| Tipo de protección | IP 67 IEC 529 / EN 60529
Las clases de protección indicadas sólo son válidas en estado conectado con clavijas de cables y terminales según el modo de protección correspondiente. |
| Tiempo de reacción ⁶) | t₅₀ < 3,3 s
t₉₀ < 9,7 s (para diámetro de vaina de 6 mm) |
| Materiales | Caja acero inoxidable 1.4571 |
| Resistencia a la vibración | ■ 3 g (DIN EN 60751, estándar)
■ 20 g (DIN EN 60751, modelos especiales, hasta una longitud de montaje máx. de 160 mm, sin atornilladura de apriete) |

⁶) Medición según DIN EN 60751 4.3.3

Para más datos técnicos del TR31 véase la hoja técnica de WIKA TE 60.31.

4. Diseño y función

4.1 Descripción

Las termorresistencias modelo TR30, TR31 se componen de una vaina con conexión fija y se rosca directamente al proceso. Son a prueba de golpes y vibraciones y están protegidos contra salpicaduras de agua. La resistencia a las vibraciones de las versión estándar corresponde a la norma DIN EN 60751 (hasta 3 g), los modelos especiales resisten una carga de hasta 10 g. La resistencia a los golpes corresponde en todas las versiones a la norma DIN EN 60751. El contacto eléctrico se realiza mediante conectores angulares DIN, forma A (TR30) o conectores circular M12 x 1 (TR30, TR31).
4. Diseño y función

4.2 Dimensiones en mm

4.2.1 Termorresistencia modelo TR30

- Conexión con rosca cilíndrica (o sin conexión)

Conector angular
DIN EN 175301-803

Conector circular de 4 polos M12 x 1
Versión con racord deslizante
Versión sin conexión
Versión con punta cónica

Versión con cuello

Leyenda:
A Longitud A (longitud de montaje)
N Longitud del cuello (70 mm)
Ød Diámetro de la vaina

Conexión con rosca cónica

Conector angular
DIN EN 175301-803

Conector circular de 4 polos M12 x 1
Versión con racord deslizante
Versión con punta cónica

Versión con cuello

Leyenda:
A Longitud A (longitud de montaje)
N Longitud del cuello (70 mm)
Ød Diámetro de la vaina
4. Diseño y función

4.2.2 Termorresistencia modelo TR31

■ Conexión con rosca cilíndrica (o sin conexión)

Conexión con rosca cónica

4.3 Volumen de suministro

Comparar mediante el albarán si se han entregado todas las piezas.
5. Transporte, embalaje, almacenamiento / 6. Puesta en ...

5. Transporte, embalaje y almacenamiento

5.1 Transporte
Comprobar si el instrumento presenta eventuales daños causados en el transporte.
Notificar de inmediato cualquier daño evidente.

5.2 Embalaje
No quitar el embalaje hasta justo antes del montaje.
Guardar el embalaje ya que es la protección ideal durante el transporte (por ejemplo si el lugar de instalación cambia o si se envía el instrumento para posibles reparaciones).

5.3 Almacenamiento

Condiciones admisibles en el lugar de almacenamiento:
■ Temperatura de almacenamiento: 0 ... 70 °C
■ Humedad: 35 ... 85 % de humedad relativa (sin rocío)

Evitar lo siguiente:
■ Luz solar directa o proximidad a objetos calientes
■ Vibración mecánica, impacto mecánico (colocación brusca)
■ Hollín, vapor, polvo y gases corrosivos

Almacenar el instrumento en su embalaje original en un lugar que cumple las condiciones arriba mencionadas. Si no se dispone del embalaje original, empaquetar y almacenar el instrumento como sigue:
1. Envolver el instrumento en una lámina de plástico antiestática.
2. Colocar el instrumento junto con el material aislante en el embalaje.
3. Para un almacenamiento prolongado (más de 30 días) colocar una bolsa con un desecante en el embalaje.

¡ADVERTENCIA!
Antes de almacenar el instrumento (después del funcionamiento), eliminar todos los restos de medios adherentes. Esto es especialmente importante cuando el medio es nocivo para la salud, como p. ej. cáustico, tóxico, cancerígeno, radioactivo, etc.

6. Puesta en servicio, funcionamiento

¡ADVERTENCIA!
Deben evitarse los esfuerzos mecánicos de las conexiones eléctricas y de las cajas. No deben superarse las temperaturas máximas de -50... +150 °C (sin cuello) y -50... +250 °C ó -50... +200 °C para TR30-V (con cuello). Abrir todas las conexiones sólo cuando estén despresurizadas y enfriadas.
6. Puesta en servicio, funcionamiento

6.1 Montaje
Estas termorresistencias están previstas para roscar directamente al proceso. Longitud de montaje, así como velocidad de flujo y viscosidad el medio pueden tener un efecto reductor con respecto a la carga máxima de la vaina.

Ejemplos de montaje

Consultar información sobre los orificios para atornillar en la norma DIN 3852 o ANSI B 1.20 para roscas NPT.

6.2 Conexión eléctrica
- Señal de salida Pt100, modelo TR30-P

Conector angular DIN EN 175301-803, forma A

Conector circular de 4 polos M12 x 1
6. Puesta en servicio, funcionamiento

- Señal de salida 4 ... 20 mA, modelo TR30-W

 Conector angular DIN EN 175301-803, forma A

 ![Diagrama de conexión](image1)

 Conector circular de 4 polos M12 x 1

 ![Diagrama de conexión](image2)

- Señal de salida 0 ... 10 V, modelo TR30-V

 Conector angular DIN EN 175301-803, forma A

 ![Diagrama de conexión](image3)

 Conector circular de 4 polos M12 x 1

 ![Diagrama de conexión](image4)

- Señal de salida Pt100, modelo TR31-P

 Conector circular de 4 polos M12 x 1

 ![Diagrama de conexión](image5)

- Señal de salida 4 ... 20 mA, modelo TR31-W

 Conector circular de 4 polos M12 x 1

 ![Diagrama de conexión](image6)
Versión con conector angular (DIN 175301-803)
En el caso de conductores trenzados recomendamos emplear virolas de cable engarzadas a presión.

Para asegurar el tipo de protección IP 65:
■ Utilizar siempre la junta de silicona
■ Apretar el tornillo de enclavamiento
Introducir el cable con sumo cuidado

6.3 Ajustes del rango de medida del modelo TR30-V
Posibles combinaciones de valor inicial y final del rango de medida:
Valor inicial transmisor: 0 °C, -20 °C, -50 °C
Valor final transmisor: +50 °C; +100 °C, +120 °C; +150 °C, +200 °C; +250 °C

Tener en cuenta:
El rango de medida viene ajustado de fábrica y no es regulable.
El alcance del rango de medida es de:
Máximo 250 K
Mínimo 50 K
Ejemplo con cuello -50 ... +200 °C ó 0 ...+250 °C.

7. Configuración de los modelos TR30-W, TR31-W
La configuración se efectúa a través del puerto USB de un ordenador vía unidad de programación modelo PU-448 (accesorio, N° de art. 11606304).
La conexión con el termómetro se establece mediante un cable adaptador apropiado.
■ Accesorio, conector enchufable circular M12 x 1: N° de art. 14003193
■ Accesorio, conector angular DIN: N° de art. 14005324
Rango de medida y señalización son configurables, así como otros parámetros; véase software de configuración.
■ Fácil manejo
■ Indicadores de estado por LED
■ Diseño compacto
■ No se necesita ninguna alimentación de corriente adicional ni para la unidad de programación ni para el transmisor
■ Posibilidad de medición de la corriente de bucle con la termorresistencia
El valor inicial del rango de medida es configurable entre -50 ... +150 °C.
El posible valor final del rango de medida depende siempre del respectivo valor inicial.
Para posibles combinaciones de valor inicial y final del rango de medida, véase el diagrama. Esta dependencia se representa, por ejemplo, en pasos de 50 °C en el diagrama para una mayor claridad. El software de configuración controla el rango de medida deseado y solamente acepta valores admisibles. Valores intermedios son posibles, el incremento más pequeño es 0,1 °C. Los termómetros se entregan con una configuración básica (0 ... +150 °C, mínimo) o configurados según especificaciones del cliente en el marco de las posibilidades de configuración.

En la configuración específica para el cliente, el rango de medición se indica en texto legible en la placa de características. En el software de configuración guiada por menú se describe la forma de configurar y las posibilidades de selección de parámetros. Apuntar cualquier modificación de la configuración en la placa de características, utilizando un rotulador permanente.

Posibles combinaciones de valor inicial y final del rango de medida:
El valor final del rango de medida depende siempre del respectivo valor inicial.
Para una mayor claridad, dicha dependencia se representa, a modo de ejemplo, en pasos de 50 °C en los diagramas. El software de configuración controla el rango de medida deseado y solamente acepta valores admisibles. Valores intermedios son posibles, el incremento más pequeño es 0,1 °C.

Diagrama para rangos de medición del modelo TR30-W

<table>
<thead>
<tr>
<th>Rango de medida en °C</th>
<th>Valor final posible del rango de medición en °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50 ... -20°C</td>
<td>-50 ... +100°C</td>
</tr>
<tr>
<td>-40 ... -20°C</td>
<td>-40 ... +100°C</td>
</tr>
<tr>
<td>0 ... +20°C</td>
<td>0 ... +200°C</td>
</tr>
<tr>
<td>+10 ... +30°C</td>
<td>+10 ... +250°C</td>
</tr>
<tr>
<td>+20 ... +50°C</td>
<td>+20 ... +250°C</td>
</tr>
<tr>
<td>+50 ... +200°C</td>
<td>+50 ... +250°C</td>
</tr>
</tbody>
</table>

Tener en cuenta:
El rango de medida del termómetro es limitado por el campo de aplicación del elemento de medición, no por el margen de ajuste del transmisor.
Sin cuello: -50 ... +150 °C
Con cuello: -50 ... +250 °C
8. Conectar la unidad de programación PU-448

Cable adaptador para conexión M12
(termorresistencia modelos TR30-W, TR31-W)

Cable adaptador para conector angular DIN conexión, forma A
(termorresistencia modelo TR30-W)
9. Mantenimiento y limpieza / 10. Desmontaje, devolución y...

9. Mantenimiento y limpieza

9.1 Mantenimiento
Las termorresistencias descritas aquí no requieren mantenimiento y no llevan componentes que pudieran ser susceptibles de reparación o sustitución.

9.2 Limpieza

¡CUIDADO!
- Antes de proceder con la limpieza hay que separar debidamente el instrumento de cualquier fuente de presión, apagarlo y desenchufarlo de la red.
- Limpiar el instrumento con un trapo húmedo.
- Asegurarse de que las conexiones eléctricas no se humedecen.
- Una vez desmontado el instrumento se debe enjuagar y limpiar antes de devolverlo para proteger a las personas y el medio ambiente contra residuos del medio de medición.
- Restos de medios en instrumentos desmontados pueden causar riesgos para personas, medio ambiente e instalación. Tomar adecuadas medidas de precaución.

Véase el capítulo "10.2 Devolución" para obtener más información acerca de la devolución del instrumento.

10. Desmontaje, devolución y eliminación

¡ADVERTENCIA!
Restos de medios en instrumentos desmontados pueden causar riesgos para personas, medio ambiente e instalación. Tomar adecuadas medidas de precaución.

10.1 Desmontaje

¡ADVERTENCIA!
¡Riesgo de quemaduras!
¡Dejar enfriar el instrumento lo suficiente antes de desmontarlo!
Peligro debido a medios muy calientes que se escapan durante el desmontaje.

¡Desmontar las termorresistencias sólo si no están sometidas a presión!
10. Desmontaje, devolución y eliminación

10.2 Devolución

¡ADVERTENCIA!
Es imprescindible observar lo siguiente para el envío del instrumento:
Todos los instrumentos enviados a WIKA deben estar libres de sustancias peligrosas (ácidos, lejías, soluciones, etc.).

Utilizar el embalaje original o un embalaje adecuado para la devolución del instrumento.

Para evitar daños:
1. Envolver el instrumento en un film de plástico antiestático.
2. Colocar el instrumento junto con el material aislante en el embalaje.
 Aislar uniformemente todos los lados del embalaje de transporte.
3. Si es posible, adjuntar una bolsa con secante.
4. Aplicar un marcaje que indique que se trata de un envío de un instrumento de medición altamente sensible.

Rellenar el formulario de devolución y adjuntarlo al instrumento.

El formulario de devolución está disponible en internet:
www.wika.es / Servicio / Devoluciones

10.3 Eliminación de residuos
Una eliminación incorrecta puede provocar peligros para el medio ambiente.
Eliminar los componentes de los instrumentos y los materiales de embalaje conforme a los reglamentos relativos al tratamiento de residuos y eliminación vigentes en el país de utilización.
North America

Canada
WIKA Instruments Ltd.
Head Office
Edmonton, Alberta, T6N 1C8
Tel. (+1) 780 46370-35
Fax: (+1) 780 46200-17
E-Mail: info@wika.ca
www.wika.ca

Mexico
Instrumentos WIKA Mexico S.A. de C.V.
01210 Mexico D.F.
Tel. (+52) 55 55466329
E-Mail: ventas@wika.com
www.wika.com.mx

USA
WIKA Instrument Corporation
Lawrenceville, GA 30043
Tel. (+1) 770 5138200
Fax: (+1) 770 3385118
E-Mail: info@wika.com
www.wika.com

South America

Argentina
WIKA Argentina S.A.
Buenos Aires
Tel. (+54) 11 47301800
Fax: (+54) 11 47610050
E-Mail: info@wika.com.ar
www.wika.com.ar

Brazil
WIKA do Brasil Ind. e Com. Ltda.
CEP 18560-000 Iperó - SP
Tel. (+55) 15 34599700
Fax: (+55) 15 32661650
E-Mail: marketing@wika.com.br
www.wika.com.br

Chile
WIKA Chile S.p.A.
Coronel Pereira 72
Oficina 101
Las Condes
Santiago de Chile
Tel. (+56) 2 3651719
E-Mail: info@wika.cl
www.wika.cl

Further WIKA subsidiaries worldwide can be found online at www.wika.com.
Weitere WIKA Niederlassungen weltweit finden Sie online unter www.wika.de.
La liste des autres filiales WIKA dans le monde se trouve sur www.wika.fr.
Otras sucursales WIKA en todo el mundo puede encontrar en www.wika.es.