Operating Instructions
Process pressure transmitter IPT-10 Vers. 2.0 - ceramic sensor
Foundation Fieldbus
Contents

1 About this document
- 1.1 Function .. 4
- 1.2 Target group ... 4
- 1.3 Symbolism used ... 4

2 For your safety
- 2.1 Authorised personnel 5
- 2.2 Appropriate use ... 5
- 2.3 Warning about misuse 5
- 2.4 General safety instructions 5
- 2.5 Safety approval markings and safety tips 6
- 2.6 CE conformity .. 6
- 2.7 Fulfillment of NAMUR recommendations 6
- 2.8 Safety instructions for Ex areas 6

3 Product description
- 3.1 Configuration .. 7
- 3.2 Principle of operation 8
- 3.3 Operation .. 9
- 3.4 Packaging, transport and storage 9

4 Mounting
- 4.1 General instructions 10
- 4.2 Mounting instructions 11
- 4.3 Mounting steps ... 12

5 Connecting to power supply
- 5.1 Preparing the connection 13
- 5.2 Connection procedure 14
- 5.3 Wiring plan, single chamber housing 15
- 5.4 Wiring plan, double chamber housing 16
- 5.5 Switch on phase .. 18

6 Set up with the indicating and adjustment module
- 6.1 Short description ... 20
- 6.2 Insert indicating and adjustment module 20
- 6.3 Adjustment system .. 22
- 6.4 Setup procedure ... 23
- 6.5 Menu schematic .. 32
- 6.6 Saving the parameter adjustment data 34

7 Setup with the adjustment program AMS™
- 7.1 Parameter adjustment with AMS™ 35

8 Maintenance and fault rectification
- 8.1 Maintenance, cleaning 36
- 8.2 Remove interferences 36
- 8.3 Instrument repair .. 37
9 Dismounting
 9.1 Dismounting steps ... 38
 9.2 Disposal ... 38

10 Supplement
 10.1 Technical data ... 39
 10.2 Information on Foundation Fieldbus 46
 10.3 Dimensions .. 50

Supplementary documentation

Information:
Supplementary documents appropriate to the ordered version come with the delivery. You can find them listed in chapter "Product description".

Instructions manuals for accessories and replacement parts

Tip:
To ensure reliable setup and operation of your IPT-1* Vers. 2.0, we offer accessories and replacement parts. The associated documents are:

• Operating instructions manual "External indicating and adjustment unit"
1 About this document

1.1 Function

This operating instructions manual provides all the information you need for mounting, connection and setup as well as important instructions for maintenance and fault rectification. Please read this information before putting the instrument into operation and keep this manual accessible in the immediate vicinity of the device.

1.2 Target group

This operating instructions manual is directed to trained qualified personnel. The contents of this manual should be made available to these personnel and put into practice by them.

1.3 Symbolism used

- Information, tip, note
 This symbol indicates helpful additional information.

- Caution: If this warning is ignored, faults or malfunctions can result.
 Warning: If this warning is ignored, injury to persons and/or serious damage to the instrument can result.
 Danger: If this warning is ignored, serious injury to persons and/or destruction of the instrument can result.

- Ex applications
 This symbol indicates special instructions for Ex applications.

- List
 The dot set in front indicates a list with no implied sequence.

- Action
 This arrow indicates a single action.

- Sequence
 Numbers set in front indicate successive steps in a procedure.
2 For your safety

2.1 Authorised personnel

Mount and set up the pressure transmitter only if you know the applicable national regulations and have the appropriate qualification. You must be acquainted with the regulations and instructions for hazardous areas, measurement and control technology as well as electrical circuits because the pressure transmitter is "electrical equipment" according to EN 50178. Depending on the application conditions, it is necessary that you have appropriate knowledge, e.g. concerning corrosive products or high pressure.

2.2 Appropriate use

IPT 1* Vers. 2.0 is a pressure transmitter for measurement of gauge pressure, absolute pressure and vacuum.

You can find detailed information on the application range in chapter "Product description".

Operational reliability is ensured only if the instrument is properly used according to the specifications in the operating instructions manual as well as possible supplementary instructions.

For safety and warranty reasons, any invasive work on the device beyond that described in the operating instructions manual may be carried out only by personnel authorised by the manufacturer. Arbitrary conversions or modifications are explicitly forbidden.

2.3 Warning about misuse

Inappropriate or incorrect use of the instrument can give rise to application-specific hazards, e.g. vessel overfill or damage to system components through incorrect mounting or adjustment.

2.4 General safety instructions

This is a high-tech instrument requiring the strict observance of standard regulations and guidelines. The user must take note of the safety instructions in this operating instructions manual, the country-specific installation standards as well as all prevailing safety regulations and accident prevention rules.

The instrument must only be operated in a technically flawless and reliable condition. The operator is responsible for trouble-free operation of the instrument.

During the entire duration of use, the user is obliged to determine the compliance of the required occupational safety measures with the current valid rules and regulations and also take note of new regulations.
2.5 Safety approval markings and safety tips

The safety approval markings and safety tips on the device must be observed.

2.6 CE conformity

This device fulfills the legal requirements of the applicable EC guidelines. By attaching the CE mark, we provide confirmation of successful testing.

2.7 Fulfillment of NAMUR recommendations

With respect to interference resistance and emitted interference, the NAMUR recommendation NE 21 is fulfilled.

With respect to compatibility, the NAMUR recommendation NE 53 is fulfilled. This applies also to the corresponding indicating and adjustment components. WIKA instruments are generally upward and downward compatible.

- Sensor software for DTM IPT-1* Vers. 2.0 HART, PA or FF
- DTM IPT-1* Vers. 2.0 for adjustment software PACTware
- Indicating and adjustment module for sensor software

The parameter adjustment of the basic sensor functions is independent of the software version. The range of available functions depends on the respective software version of the individual components.

The software version of IPT-1* Vers. 2.0 can be determined as follows:

- via PACTware
- on the type label of the electronics
- via the indicating and adjustment module

2.8 Safety instructions for Ex areas

Please note the Ex-specific safety information for installation and operation in Ex areas. These safety instructions are part of the operating instructions manual and come with the Ex-approved instruments.
3 Product description

3.1 Configuration

Scope of delivery
The scope of delivery encompasses:

- IPT-1* Vers. 2.0 process pressure transmitter
- Documentation
 - this operating instructions manual
 - Operating instructions manual "Indicating and adjustment module" (optional)
 - Supplementary instructions manual "Plug connector for continuously measuring sensors" (optional)
 - Ex-specific "Safety instructions" (with Ex-versions)
 - if necessary, further certificates

Components
IPT-1* Vers. 2.0 consists of the following components:

- Process fitting with measuring cell
- Housing with electronics, optionally available with plug connector
- Housing cover, optionally available with indicating and adjustment module

The components are available in different versions.

![Diagram](image)

Fig. 1: Example of a IPT-1* Vers. 2.0 with manometer connection G½ A according to EN 837 and Alu housing
1 Housing cover with integrated indicating and adjustment module (optional)
2 Housing with electronics
3 Process fitting with measuring cell

Type label
The type label contains the most important data for identification and use of the instrument:

- Article number
- Serial number
- Technical data
3.2 Principle of operation

Application area

IPT-1* Vers. 2.0 is a pressure transmitter for measurement of gauge pressure, absolute pressure or vacuum. Measured products are gases, vapours and liquids.

Functional principle

Sensor element is the ceramic measuring cell with rugged ceramic diaphragm. The process pressure causes a capacitance change in the measuring cell via the diaphragm. This change is converted into an appropriate output signal and outputted as measured value.

The measuring cell is also equipped with a temperature sensor. The temperature value can be displayed via the indicating and adjustment module or processed via the signal output.

Power supply and bus communication

Power is supplied via the H1 Fieldbus. A two-wire cable according to Fieldbus specification serves as carrier of both power and digital data for multiple sensors. This cable can be operated in two versions:

- via an H1 interface card in the control system and additional power supply
- via a Linking device with HSE (High speed Ethernet) and additional power supply according to IEC 61158-2

DD/CFF

The DD (Device Descriptions) and CFF (capability files) necessary for planning and configuration of your FF (Foundation Fieldbus) communication network are available in the download area of the WIKA homepage www.wika.com under "Services". The appropriate certificates are also available there. A CD with the appropriate files and certificates can be ordered via e-mail under info@de.wika.com or by phone from one of the WIKA agencies.

The backlight of the indicating and adjustment module is powered by the sensor. Prerequisite is a certain level of operating voltage.

The data for power supply are specified in chapter "Technical data".

This function is available at a later date for instruments with StEx, WHG or ship approval as well as country-specific approvals such as those according to FM or CSA.
3.3 Operation

IPT-1* Vers. 2.0 can be adjusted with different adjustment media:

- with indicating and adjustment module
- a configuration tool

The entered parameters are generally saved in IPT-1* Vers. 2.0, optionally also in the indicating/adjustment module.

3.4 Packaging, transport and storage

Packaging

Your instrument was protected by packaging during transport. Its capacity to handle normal loads during transport is assured by a test according to DIN EN 24180.

The packaging of standard instruments consists of environment-friendly, recyclable cardboard. For special versions, PE foam or PE foil is also used. Dispose of the packaging material via specialised recycling companies.

Transport

Transport must be carried out under consideration of the notes on the transport packaging. Nonobservance of these instructions can cause damage to the device.

Transport inspection

The delivery must be checked for completeness and possible transit damage immediately at receipt. Ascertained transit damage or concealed defects must be appropriately dealt with.

Storage

Up to the time of installation, the packages must be left closed and stored according to the orientation and storage markings on the outside.

Unless otherwise indicated, the packages must be stored only under the following conditions:

- Not in the open
- Dry and dust free
- Not exposed to corrosive media
- Protected against solar radiation
- Avoiding mechanical shock and vibration

Storage and transport temperature

- Storage and transport temperature see chapter "Supplement - Technical data - Ambient conditions"
- Relative humidity 20 … 85 %
4 Mounting

4.1 General instructions

Suitability for process conditions
Make sure that all parts of the instrument in contact with the measured product, especially the sensor element, process seal and process fitting, are suitable for the existing process conditions such as process pressure, process temperature as well as the chemical properties of the medium.

You can find the specifications in chapter "Technical data" in the or on the type label.

Mounting position
Select an installation position you can easily reach for mounting and connecting as well as later retrofitting of an indicating and adjustment module. The housing can be rotated by 330° without the use of any tools. You can also install the indicating and adjustment module in four different positions (each displaced by 90°).

Moisture
Use the recommended cables (see chapter “Connecting to power supply”) and tighten the cable gland.

You can give your instrument additional protection against moisture penetration by leading the connection cable downward in front of the cable entry. Rain and condensation water can thus drain off. This applies mainly to outdoor mounting as well as installation in areas where high humidity is expected (e.g. through cleaning processes) or on cooled or heated vessels.

Ventilation and pressure compensation
The ventilation of the measuring cell is realised by a filter element in the socket of the electronics housing. The ventilation of the electronics housing is realised via an additional filter element around the cable glands. ¹)

¹) With previous instrument versions, ventilation and pressure compensation were carried out together via a filter element.

Fig. 2: Measures against moisture penetration
Fig. 3: Position of the filter elements
1 Filter element for ventilation of the measuring cell
2 Filter element for ventilation of the electronics housing

Information:
Make sure that the filter elements are always free of buildup during operation. A pressure washer must not be used for cleaning.

Temperature limits
Higher process temperatures mean often also higher ambient temperatures.

Fig. 4: Temperature ranges
1 Process temperature
2 Ambient temperature

Make sure that the upper temperature limits for the environment of electronics housing and connection cable specified in chapter "Technical data" are not exceeded.

4.2 Mounting instructions

Mounting position
IPT-1* Vers. 2.0 functions in any installation position. It is mounted according to the same directives as a manometer (DIN EN 839-2).²)

²) Probable position correction see chapter "Setup steps".
Information:
We recommend using lock fittings, measuring instrument holders and siphons from the line of WIKA accessories.

4.3 Mounting steps

Welding the socket
For mounting IPT-1* Vers. 2.0 a welded socket is necessary.
→ Note the applicable welding standards (segment welding procedure) when welding the socket.

Sealing/Screwing in
Use the seal corresponding to the instrument:
- Process fitting GD: Tesnit seal in front of the thread
- or -
Seal the thread with teflon, hemp or a similar resistant seal material:
- Process fitting ND
→ Screw IPT-1* Vers. 2.0 into the welded socket. Tighten the hexagon on the process fitting with a suitable wrench. Wrench size, see chapter "Dimensions".

Warning:
The housing must not be used to screw the instrument in! Applying tightening force can damage internal parts of the housing.
5 Connecting to power supply

5.1 Preparing the connection

Note safety instructions
Always keep in mind the following safety instructions:

- Connect only in the complete absence of line voltage
- If overvoltage surges are expected, overvoltage arresters should be installed according to Fieldbus specifications

Take note of safety instructions for Ex applications
In hazardous areas you should take note of the appropriate regulations, conformity and type approval certificates of the sensors and power supply units.

Select power supply
IPT-1* Vers. 2.0 requires a supply voltage of 9 … 24 V DC. Power and the digital bus signal are carried on the same two-wire connection cable. Power is supplied via the H1 power supply.

Selecting connection cable
IPT-1* Vers. 2.0 is connected with screened cable according to Fieldbus specification.

Use cable with round cross-section. A cable outer diameter of 5 … 9 mm (0.2 … 0.35 in) ensures the seal effect of the cable gland. If you are using cable with a different diameter or cross-section, exchange the seal or use a suitable cable gland.

Make sure that the entire installation is carried out according to the Fieldbus specification. In particular, make sure that the termination of the bus is done with appropriate terminating resistors.

Cable screening and grounding
In systems with potential equalisation, connect the cable screen directly to ground potential at the power supply unit, in the connection box and at the sensor. The screen in the sensor must be connected directly to the internal ground terminal. The ground terminal outside on the housing must be connected to the potential equalisation (low impedance).

In systems without potential equalisation, connect the cable screen directly to ground potential at the power supply unit and at the sensor. In the connection box or T-distributor, the screen of the short stub to the sensor must not be connected to ground potential or to another cable screen. The cable screens to the power supply unit and to the next distributor must be connected to each other and also connected to ground potential via a ceramic capacitor (e.g. 1 nF, 1500 V). The low frequency potential equalisation currents are thus suppressed, but the protective effect against high frequency interference signals remains.

The total capacitance of the cable and of all capacitors must not exceed 10 nF in Ex applications.
Take note of the corresponding installation regulations for Ex applications. In particular, make sure that no potential equalisation currents flow over the cable screen. In case of grounding on both sides this can be achieved by the use of a capacitor or a separate potential equalisation.

5.2 Connection procedure

Proceed as follows:

1. Unscrew the housing cover
2. If an indicating and adjustment module is installed, remove it by turning it slightly to the left.
3. Loosen compression nut of the cable entry
4. Remove approx. 10 cm (4 in) of the cable mantle, strip approx. 1 cm (0.4 in) insulation from the ends of the individual wires
5. Insert the cable through the cable gland into the sensor
6. Lift the opening levers of the terminals with a screwdriver (see following illustration)
7. Insert the wire ends into the open terminals according to the wiring plan

![Connection steps 6 and 7](image)

8. Press down the opening levers of the terminals, you will hear the terminal spring closing
9 Check the hold of the wires in the terminals by lightly pulling on them.

10 Connect the screen to the internal ground terminal, connect the outer ground terminal with potential equalisation.

11 Tighten the compression nut of the cable entry. The seal ring must completely encircle the cable.

12 Screw the housing cover on.

The electrical connection is finished.

5.3 Wiring plan, single chamber housing

The following illustrations apply to the non-Ex as well as to the Ex-ia version.

Housing overview

![Diagram of housing overview]

Fig. 6: Material versions, single chamber housing

1 Plastic
2 Aluminium
3 Stainless steel
5 Connecting to power supply

Electronics and connection compartment

![Diagram of electronics and connection compartment]

Fig. 7: Electronics and connection compartment, single chamber housing
1 Plug connector for service
2 Spring-loaded terminals for connection of the external indicating and adjustment module
3 Ground terminal for connection of the cable screen
4 Spring-loaded terminals for voltage supply

Wiring plan

![Diagram of wiring plan]

Fig. 8: Wiring plan, single chamber housing
1 Voltage supply/Signal output

5.4 Wiring plan, double chamber housing

The following illustrations apply to the non-Ex as well as to the Ex-ia version.
Housing overview

Fig. 9: Double chamber housing
1 Housing cover, connection compartment
2 Blind stopper or plug M12 x 1 for the external indicating and adjustment module (optional)
3 Housing cover, electronics compartment
4 Filter element for air pressure compensation
5 Cable entry or plug

Electronics compartment

Fig. 10: Electronics compartment, double chamber housing
1 Plug connector for service
2 Internal connection cable to the connection compartment
3 Terminals for the external indicating and adjustment module
5.5 **Switch on phase**

After IPT-1* Vers. 2.0 is connected to voltage supply or after voltage recurrence, the instrument carries out a self-check for approx. 30 seconds. The following steps are carried out:

- Internal check of the electronics
- Indication of the instrument type, the firmware as well as the sensor TAGs (sensor designation)
- Status byte goes briefly to fault value
Then the current measured value will be displayed and the corresponding digital output signal will be outputted to the cable.\(^3\)

\(^3\) The values correspond to the actual measured level as well as to the settings already carried out, e.g. default setting.
6 Set up with the indicating and adjustment module

6.1 Short description

The indicating and adjustment module is used for measured value display, adjustment and diagnosis. It can be mounted in the following housing versions and instruments:

- All sensors of the IPT-1* instrument family, in the single as well as double chamber housing (optionally in the electronics or connection compartment)
- External indicating and adjustment unit

Note:
You can find detailed information on adjustment in the operating instructions manual "Indicating and adjustment module".

6.2 Insert indicating and adjustment module

The indicating and adjustment module can be inserted and removed at any time. It is not necessary to interrupt the voltage supply.

For mounting, proceed as follows:

1. Unscrew the housing cover
2. Place the indicating and adjustment module in the desired position on the electronics (you can choose any one of four different positions - each displaced by 90°)
3. Press the indicating and adjustment module onto the electronics and turn it to the right until it snaps in.
4. Screw housing cover with inspection window tightly back on

Removal is carried out in reverse order.

The indicating and adjustment module is powered by the sensor, an additional connection is not necessary.
Fig. 13: Mounting the indicating and adjustment module

Note:
If you intend to retrofit the instrument with an indicating and adjustment module for continuous measured value indication, a higher cover with an inspection glass is required.
6.3 Adjustment system

Fig. 14: Indicating and adjustment elements
1 LC display
2 Indication of the menu item number
3 Adjustment keys

Key functions

- **[OK]** key:
 - Move to the menu overview
 - Confirm selected menu
 - Edit parameter
 - Save value

- **[->]** key to select:
 - menu change
 - list entry
 - Select editing position

- **[+]** key:
 - Change value of the parameter

- **[ESC]** key:
 - interrupt input
 - jump to the next higher menu

Adjustment system

The sensor is adjusted via the four keys of the indicating and adjustment module. The LC display indicates the individual menu items. The functions of the individual keys are shown in the above illustration. Approx. 10 minutes after the last pressing of a key, an automatic reset to measured value indication is triggered. Any values not confirmed with **[OK]** will not be saved.
6.4 Setup procedure

IPT-1* Vers. 2.0 can be used for level as well as for process pressure measurement. Default setting is level measurement. The mode can be changed in the adjustment menu.

Depending on the application only the respective subchapter "Level or process pressure measurement" is of importance. There, you find the individual adjustment steps.

Level measurement

Set up IPT-1* Vers. 2.0 in the following sequence:

1 Selecting adjustment unit/density unit
2 Carry out position correction
3 Carrying out min. adjustment
4 Carrying out max. adjustment

In the menu item "Adjustment unit" you select the physical unit in which the adjustment should be carried out, e.g. mbar, bar, psi...

The position correction compensates the influence of the mounting position or static pressure on the measurement. It does not influence the adjustment values.

Information:

The steps 1, 3 and 4 are not necessary for instruments which are already preset according to customer specifications!

You can find the data on the type label on the instrument or in the menu items of the min./max. adjustment.

The indicating and adjustment module enables the adjustment without filling or pressure. Thanks to this, you can carry out your settings already in the factory without the instrument having to be installed.

The actual measured value is also displayed in the menu items for min./max. adjustment.

Select unit

In this menu item you select the adjustment unit as well as the unit for the temperature indication in the display.

To select the adjustment unit (in the example switching over from bar to mbar) you have to proceed as follows: \(^4\)

1 Push the [OK] button in the measured value display, the menu overview is displayed.

\(^4\) Selection options: mbar, bar, psi, Pa, kPa, MPa, inHg, mmHg, inH₂O, mmH₂O.
2 Confirm the menu "**Basic adjustment**" with [OK], the menu item "**Unit**" will be displayed.

3 Activate the selection with [OK] and select "**Units of measurement**" with [->].

4 Activate the selection with [OK] and select the requested unit with [->] (in the example mbar).

5 Confirm with [OK] and move to position correction with [->].

The adjustment unit is hence switched over from bar to mbar.

Information:

When switching over to adjustment in a height unit (in the example from bar to m), the density also has to be entered.

Proceed as follows:

1 Push the [OK] button in the measured value display, the menu overview is displayed.

2 Confirm the menu "**Basic adjustment**" with [OK], the menu item "**Units of measurement**" will be displayed.

3 Activate the selection with [OK] and select the requested unit with [->] (in the example m).

4 Confirm with [OK], the submenu "**Density unit**" appears.

5 Select the requested unit, e.g. kg/dm³ with [->] and confirm with [OK], the submenu "**Density**" appears.

6 Enter the requested density value with [->] and [+], confirm with [OK] and move to position correction with [->].
The adjustment unit is hence switched over from bar to mbar.

Proceed as follows to select the temperature unit:

→ Activate the selection with [OK] and select "Temperature unit" with [->].
→ Activate the selection with [OK] and select the requested unit with [->] (e.g. °F).
→ Confirm with [OK].

The temperature unit is hence switched over from °C to °F.

Carry out position correction

Proceed as follows:

1. Activate in the menu item "Position correction" the selection with [OK].

 ![Position correction menu](image)

 - Offset: +0000 mbar
 - 53 mbar

2. Select with [->], e.g. to accept actual measured value.

 ![Position correction menu](image)

3. Confirm with [OK] and move to min.(zero) adjustment with [->].

Carrying out min. adjustment

Proceed as follows:

1. Edit the % value in the menu item "Min. adjustment" with [OK].

 ![Min. adjustment menu](image)

 - +000.0 %
 - +0000.0 mbar
 - 0000.0 mbar

2. Set the requested percentage value with [+] and [->].
3. Edit the requested mbar value with [OK].
4. Set the requested mbar value with [+] and [->].
5. Confirm with [+] and move to max. adjustment with [->].

The min. adjustment is finished.

Information:

For an adjustment with filling, you simply enter the displayed actual measured value. If the adjustment ranges are exceeded, the message "Outside parameter limits" appears. The editing procedure can be repeated.

5) Selection options: °C, °F.
aborted with [ESC] or the displayed limit value can be accepted with [OK].

Carrying out max. adjustment

Proceed as follows:

1. Edit the % value in the menu item "Max. adjustment" with [OK].

2. Set the requested percentage value with [->] and [OK].
3. Edit the requested mbar value with [OK].
4. Set the requested mbar value with [+] and [->].
5. Confirm with [OK] and move to the menu overview with [ESC].

The max. adjustment is finished.

Information:

The displayed pressure for 100 % corresponds to the nominal measuring range of the sensor (in the above example 1 bar = 1000 mbar).

Parameter adjustment "Process pressure measurement"

Set up IPT-1* Vers. 2.0 in the following sequence:

1. Select application "Process pressure measurement"
2. Select the unit of measurement
3. Carry out position correction
4. Carrying out zero adjustment
5. Carrying out span adjustment

In the menu item "Adjustment unit" you select the physical unit in which the adjustment should be carried out, e.g. mbar, bar, psi...

The position correction compensates the influence of the mounting position or static pressure on the measurement. It does not influence the adjustment values.

In the menu items "zero" and "span" you determine the span of the sensor, the span corresponds to the end value.
Information:
The steps 1, 3 and 4 are not necessary for instruments which are already preset according to customer specifications!

You can find the data on the type label on the instrument or in the menu items of the zero/span adjustment.

The indicating and adjustment module enables the adjustment without filling or pressure. Thanks to this, you can carry out your settings already in the factory without the instrument having to be installed.

The actual measured value is displayed in addition to the menu items for zero/span adjustment.

Select application "Process pressure measurement"

IPT-1* Vers. 2.0 is preset to application "Level measurement".
Proceed as follows when switching over to application "Process pressure measurement":

1 Push the [OK] button in the measured value display, the menu overview is displayed.
2 Select the menu "Service" with [->] and confirm with [OK].

3 Select the menu item "Application" with [->] and edit with [OK].

Warning:
Note the warning: "Output can change".

4 Select with [->] "OK" and confirm with [OK].
5 Select "Process pressure" from the list and confirm with [OK].

Select unit

In this menu item you select the adjustment unit as well as the unit for the temperature indication in the display.

To select the adjustment unit (in the example switching over from bar to mbar) you have to proceed as follows:6)

1 Push the [OK] button in the measured value display, the menu overview is displayed.

6) Selection options: mbar, bar, psi, Pa, kPa, MPA, inHg, mmHg, inH2O, mmH2O.
2. Confirm the menu "Basic adjustment" with [OK], the menu item "Unit" will be displayed.

3. Activate the selection with [OK] and select "Units of measurement" with [->].

4. Activate the selection with [OK] and select the requested unit with [->] (in the example mbar).

5. Confirm with [OK] and move to position correction with [->].
 The adjustment unit is hence switched over from bar to mbar.

 Proceed as follows to select the temperature unit:

 → Activate the selection with [OK] and select "Temperature unit" with [->].
 → Activate the selection with [OK] and select the requested unit with [->] (e.g. °F).
 → Confirm with [OK].
 The temperature unit is hence switched over from °C to °F.

Carry out position correction

Proceed as follows:

1. Activate in the menu item "Position correction" the selection with [OK].

2. Select with [->], e.g. to accept actual measured value.

3. Confirm with [OK] and move to min.(zero) adjustment with [->].

Carrying out zero adjustment

Proceed as follows:

1. Edit the mbar value in the menu item "zero" with [OK].

7) Selection options: °C, °F.
2 Set the requested mbar value with [+] and [-].
3 Confirm with [+] and move to span adjustment with [-].

The zero adjustment is finished.

Information:
The zero adjustment shifts the value of the span adjustment. The span, i.e. the difference between these values, however, remains unchanged.

Information:
For an adjustment with pressure, you simply enter the displayed actual measured value. If the adjustment ranges are exceeded, the message "Outside parameter limits" appears. The editing procedure can be aborted with [ESC] or the displayed limit value can be accepted with [OK].

Carrying out span adjustment

Proceed as follows:

1 Edit the mbar value in the menu item "span" with [OK].

Information:
The displayed pressure for 100 % corresponds to the nominal measuring range of the sensor (in the above example 1 bar = 1000 mbar).

2 Set the requested mbar value with [-] and [OK].
3 Confirm with [OK] and move to the menu overview with [ESC].

The span adjustment is finished.

Information:
For an adjustment with pressure, you simply enter the displayed actual measured value. If the adjustment ranges are exceeded, the message "Outside parameter limits" appears. The editing procedure can be aborted with [ESC] or the displayed limit value can be accepted with [OK].
Copy sensor data

This function enables reading out parameter adjustment data as well as writing parameter adjustment data into the sensor via the indicating and adjustment module. A description of the function is available in the operating instructions manual "Indicating and adjustment module".

The following data are read out or written with this function:

- Measured value presentation
- Adjustment
- Damping
- Linearisation curve
- Sensor-TAG
- Displayed value
- Unit of measurement
- Language

The following safety-relevant data are **not** read out or written:

- PIN
- Application

Reset

Basic adjustment

If the "Reset" is carried out, the sensor resets the values of the following menu items to the reset values (see chart)\(^8\):

<table>
<thead>
<tr>
<th>Menu section</th>
<th>Function</th>
<th>Reset value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic settings</td>
<td>Unit of measurement</td>
<td>bar</td>
</tr>
<tr>
<td></td>
<td>Temperature unit</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Zero/Min. adjustment</td>
<td>Measuring range begin</td>
</tr>
<tr>
<td></td>
<td>Span/Max. adjustment</td>
<td>Measuring range end</td>
</tr>
<tr>
<td></td>
<td>Density</td>
<td>1 kg/l</td>
</tr>
<tr>
<td></td>
<td>Density unit</td>
<td>kg/l</td>
</tr>
<tr>
<td></td>
<td>Damping</td>
<td>0 s</td>
</tr>
<tr>
<td></td>
<td>Linearisation</td>
<td>linear</td>
</tr>
<tr>
<td></td>
<td>Sensor-TAG</td>
<td>Sensor</td>
</tr>
<tr>
<td>Display</td>
<td>Displayed value</td>
<td>AI-Out</td>
</tr>
</tbody>
</table>

The values of the following menu items are **not** reset with "Reset:

<table>
<thead>
<tr>
<th>Menu section</th>
<th>Function</th>
<th>Reset value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic settings</td>
<td>Position correction</td>
<td>no reset</td>
</tr>
<tr>
<td>Display</td>
<td>Lighting</td>
<td>no reset</td>
</tr>
<tr>
<td>Service</td>
<td>Language</td>
<td>no reset</td>
</tr>
</tbody>
</table>

\(^8\) Sensor-specific basic adjustment.
Menu section

<table>
<thead>
<tr>
<th>Function</th>
<th>Reset value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>no reset</td>
</tr>
</tbody>
</table>

Factory setting

Like basic adjustment, furthermore special parameters are reset to default values.

Pointer

The min. and max. distance values are reset to the actual value.

Optional settings

Additional adjustment and diagnosis options such as e.g. scaling, simulation or trend curve presentation are shown in the following menu schematic. You will find a detailed description of these menu items in the operating instructions manual "*Indicating and adjustment module*".

9) Special parameters are parameters which are set customer-specifically on the service level with the adjustment software PACTware.
6.5 Menu schematic

Information:
Depending on the version and application, the highlighted menu windows are not always available.

Basic adjustment

- Basic adjustment
 - Display
 - Diagnostics
 - Service
 - Info

- Unit
 - Unit of measurement
 - bar ▼
 - Temperature unit
 - °C ▼

- Damping
 - 0 s

- Position correction
 - Offset
 - = 0.2 mbar
 - 0000 mbar

- Min. adjustment
 - 000.0 %
 - = 0.0 mbar
 - 0.0 mbar

- Max. adjustment
 - 100.00 %
 - = 100.00 mbar
 - 0.0 mbar

- Linearisation curve
 - linear ▼

- Sensor-TAG
 - Sensor

Display

- Basic adjustment
 - Display
 - Diagnostics
 - Service
 - Info

- Displayed value
 - AI-Out

- Lighting
 - Switched off ▼

Diagnostics

- Basic adjustment
 - Display
 - Diagnostics
 - Service
 - Info

- Pointer
 - p-min.: -5.6 mbar
 - p-max.: 167.5 mbar
 - T-min.: -12.5 °C
 - T-max.: +85.5 °C

- Sensor status
 - OK

- Trend curve
 - Start trend curve?
Service

- **Basic adjustment**
- **Display**
- **Diagnostics**
- **Service**
- **Info**

Simulation
- **Start simulation ▼**

Reset
- **Select reset ▼**

Language
- **Deutsch**

Copy sensor data
- **Copy sensor data?**

PIN
- **Enable?**

Application
- **Level**

Info

- **Basic adjustment**
- **Display**
- **Diagnostics**
- **Service**
- **Info**

Device-ID
- **Sensor-TAG**

Sensor type
- **Serial number**
 - 12345678

Date of manufacture
- **e.g. 16. May 2008**
- **Software version**
 - e.g. 3.50

Last change using PC
- **e.g. 16. May 2008**

Sensor characteristics
- **Display now?**
6.6 Saving the parameter adjustment data

It is recommended noting the adjusted data, e.g. in this operating instructions manual and archive them afterwards. They are hence available for multiple use or service purposes.

If IPT-1* Vers. 2.0 is equipped with an indicating and adjustment module, the most important data can be read out of the sensor into indicating and adjustment module. The procedure is described in the operating instructions manual "Indicating and adjustment module" in the menu item "Copy sensor data". The data remain there permanently even if the sensor power supply fails.

If it is necessary to exchange the sensor, the indicating and adjustment module is inserted into the replacement instrument and the data are written into the sensor under the menu item "Copy sensor data".
7 Setup with the adjustment program AMS™

7.1 Parameter adjustment with AMS™

For WIKA sensors, instrument descriptions for the adjustment program AMS™ are available as DD. The instrument descriptions are already implemented in the current version of AMS™. For older versions of AMS™, a free-of-charge download is available via Internet.

Go via www.WIKA.com and "Downloads" to the item "Software".
8 Maintenance and fault rectification

8.1 Maintenance, cleaning

When used in the correct way, no special maintenance is required in normal operation.

In some applications, product buildup on the sensor diaphragm can influence the measuring result. Depending on the sensor and application, take precautions to ensure that heavy buildup, and especially a hardening thereof, is avoided.

If necessary, the transmitter has to be cleaned. In this case, make sure that the materials are resistant against the cleaning detergents.

8.2 Remove interferences

Reaction when malfunctions occur	The operator of the system is responsible for taken suitable measures to remove interferences.
Causes of malfunction	A maximum of reliability is ensured. Nevertheless, faults can occur during operation. These may be caused by the following, e.g.:
	● Sensor
	● Process
	● Power supply
	● Signal processing

Fault rectification

The first measures to be taken are to check the output signals as well as to evaluate the error messages via the indicating and adjustment module. The procedure is described below. Further comprehensive diagnostics can be carried out on a PC with the software PACTware and the suitable DTM. In many cases, the causes can be determined in this way and faults can be rectified.

Checking Foundation Fieldbus

? When an additional instrument is connected, the H1 segment fails.
 ● Max. supply current of the segment coupler exceeded
 → Measure the current consumption, reduce size of segment

? Measured value on the indicating and adjustment module does not correspond to the value in the PLC
 ● The menu item "Display - Display value" is not set to "AI-Out"
 → Check values and correct, if necessary

? Instrument does not appear during connection setup
 ● Incorrect termination
 → Check termination at the beginning and end points of the bus and terminate, if necessary, according to the specification
 ● Instrument not connected to the segment
 → Check and correct
In Ex applications, the regulations for the wiring of intrinsically safe circuits must be observed.

Fault messages via the indicating/adjustment module

- **E013**
 - no measured value available\(^{10}\)
 - Exchange instrument or return instrument for repair

- **E017**
 - Adjustment span too small
 - repeat with modified values

- **E036**
 - no operable sensor software
 - Carry out a software update or send the instrument for repair

- **E041**
 - Hardware error, electronics defective
 - Exchange instrument or return instrument for repair

- **E113**
 - Communication conflict
 - Exchange instrument or return instrument for repair

Reaction after fault rectification

Depending on the failure reason and measures taken, the steps described in chapter "Set up" must be carried out again, if necessary.

8.3 Instrument repair

You can download a return form (24 KB) in the Internet from our homepage www.wika.com under the item "Service".

If a repair is necessary, please proceed as follows:

- Print and fill out one form per instrument
- If necessary, state a contamination
- Clean the instrument and pack it damage-proof
- Attach the completed form and probably a safety data sheet to the instrument
- Please contact the agency serving you for the address of the return shipment

By doing this you help us carry out the repair quickly and without having to call back for needed information.

\(^{10}\) Fault message can also appear if the pressure is higher than the nominal range.
9 Dismounting

9.1 Dismounting steps

Warning:
Before dismounting, be aware of dangerous process conditions such as e.g. pressure in the vessel, high temperatures, corrosive or toxic products etc.

Take note of chapters "Mounting" and "Connecting to power supply" and carry out the listed steps in reverse order.

9.2 Disposal

Note:
When disposing of old instruments, take note of the valid legal and municipal regulations. The appropriate parts must be recycled.
10 Supplement

10.1 Technical data

General data

Parameter, pressure	Gauge pressure, absolute pressure, vacuum
Measuring principle	Ceramic-capacitive, dry measuring cell
Service interface	I²C bus

Materials and weights

316L corresponds to 1.4404 or 1.4435

Materials, wetted parts

- Process fitting: 316L, Hastelloy C276/C4, Titanium Grade 2, PVDF
- Diaphragm: sapphire ceramic® (99.9 % oxide ceramic)
- Joining material diaphragm/Basic element measuring cell: Glass solder
- Measuring cell seal: FKM (A+P 70.16-06), FFKM (Kalrez 6375), EPDM (A+P 75.5KW/75F), silicone, FFKM (Chemraz 535)
- Seal, process fitting: Klingsersil C-4400, Tesnit

Materials, non-wetted parts

- Electronics housing: Plastic PBT (polyester), Alu die-casting powder-coated, 316L
- Seal, housing cover: Silicone
- Inspection window in housing cover for indicating and adjustment module: Polycarbonate (UL-746-C listed)
- Ground terminal: 316Ti/316L

Weight approx.: 0.8 kg (1.764 lbs)

Output variable

Output

- Signal: digital output signal, Foundation Fieldbus protocol
- Physical layer: according to IEC 61158-2

Channel Numbers

- Channel 1: Primary Value
- Channel 2: Secondary Value 1
- Channel 3: Secondary Value 2
- Channel 4: Temperature Value

Transmission rate: 31.25 Kbit/s

Current value: 10 mA, ±0.5 mA
Dynamic behaviour output

Run-up time approx. 10 s

![Graph of sudden change of process variable, dead time \(t_T\), rise time \(t_A\), and step response time \(t_S\).]

Fig. 15: Sudden change of the process variable, dead time \(t_T\), rise time \(t_A\), and step response time \(t_S\)

1. Process variable
2. Output signal

- **Dead time**: \(\leq 150\) ms
- **Rise time**: \(\leq 100\) ms (10 ... 90 %)
- **Step response time**: \(\leq 250\) ms (ti: 0 s, 10 ... 90 %)
- **Damping** (63 % of the input variable): 0 ... 999 s, adjustable

Additional output parameter - temperature

Processing is made via output signal HART multidrop, Profibus PA and Foundation Fieldbus

- **Range**: -50 ... +150 °C (-58 ... +302 °F)
- **Resolution**: 1 °C (1.8 °F)
- **Accuracy**
 - in the range of 0 ... +100 °C (+32 ... +212 °F): \(\pm 3\) K
 - in the range of -50 ... 0 °C (-58 ... +32 °F) and +100 ... +150 °C (+212 ... +302 °F): typ. \(\pm 4\) K

Input variable

Adjustment

Adjustment range of the min./max. adjustment relating to the nominal measuring range:

- **percentage value**: -10 ... 110 %
- **pressure value**: -20 ... 120 %
Adjustment range of the zero/span adjustment relating to the nominal measuring range:
- zero -20 ... +95 %
- Span -120 ... +120 % 11)
- Difference between zero and span max. 120 % of the nominal range

Recommended max. turn down 10 : 1 (no limitation)

Nominal measuring ranges and overload resistance

<table>
<thead>
<tr>
<th>Nominal range</th>
<th>Overload, max. pressure</th>
<th>Overload, min. pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauge pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 ... 0.1 bar/0 ... 10 kPa</td>
<td>15 bar/1500 kPa</td>
<td>-0.2 bar/-20 kPa</td>
</tr>
<tr>
<td>0 ... 0.2 bar/0 ... 20 kPa</td>
<td>20 bar/2000 kPa</td>
<td>-0.4 bar/-40 kPa</td>
</tr>
<tr>
<td>0 ... 0.4 bar/0 ... 40 kPa</td>
<td>30 bar/3000 kPa</td>
<td>-0.8 bar/-80 kPa</td>
</tr>
<tr>
<td>0 ... 1 bar/0 ... 100 kPa</td>
<td>35 bar/3500 kPa</td>
<td>-1 bar/-100 kPa</td>
</tr>
<tr>
<td>0 ... 2.5 bar/0 ... 250 kPa</td>
<td>50 bar/5000 kPa</td>
<td>-1 bar/-100 kPa</td>
</tr>
<tr>
<td>0 ... 5 bar/0 ... 500 kPa</td>
<td>65 bar/6500 kPa</td>
<td>-1 bar/-100 kPa</td>
</tr>
<tr>
<td>0 ... 10 bar/0 ... 1000 kPa</td>
<td>90 bar/9000 kPa</td>
<td>-1 bar/-100 kPa</td>
</tr>
<tr>
<td>0 ... 25 bar/0 ... 2500 kPa</td>
<td>130 bar/13000 kPa</td>
<td>-1 bar/-100 kPa</td>
</tr>
<tr>
<td>0 ... 60 bar/0 ... 6000 kPa</td>
<td>200 bar/20000 kPa</td>
<td>-1 bar/-100 kPa</td>
</tr>
</tbody>
</table>

| Nominal measuring ranges and overload capability in psig |

<table>
<thead>
<tr>
<th>Nominal range</th>
<th>Overload, max. pressure</th>
<th>Overload, min. pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1 ... 0 bar/-100 ... 0 kPa</td>
<td>35 bar/3500 kPa</td>
<td>-1 bar/-100 kPa</td>
</tr>
<tr>
<td>-1 ... 1.5 bar/-100 ... 150 kPa</td>
<td>50 bar/5000 kPa</td>
<td>-1 bar/-100 kPa</td>
</tr>
<tr>
<td>-1 ... 5 bar/-100 ... 500 kPa</td>
<td>65 bar/6500 kPa</td>
<td>-1 bar/-100 kPa</td>
</tr>
<tr>
<td>-1 ... 10 bar/-100 ... 1000 kPa</td>
<td>90 bar/9000 kPa</td>
<td>-1 bar/-100 kPa</td>
</tr>
<tr>
<td>-1 ... 25 bar/-100 ... 2500 kPa</td>
<td>130 bar/13000 kPa</td>
<td>-1 bar/-100 kPa</td>
</tr>
<tr>
<td>-1 ... 60 bar/-100 ... 6000 kPa</td>
<td>200 bar/20000 kPa</td>
<td>-1 bar/-100 kPa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal range</th>
<th>Overload, max. pressure</th>
<th>Overload, min. pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.05 ... 0.05 bar/-5 ... 5 kPa</td>
<td>15 bar/1500 kPa</td>
<td>-0.2 bar/-20 kPa</td>
</tr>
<tr>
<td>-0.1 ... 0.1 bar/-10 ... 10 kPa</td>
<td>20 bar/2000 kPa</td>
<td>-0.4 bar/-40 kPa</td>
</tr>
<tr>
<td>-0.2 ... 0.2 bar/-20 ... 20 kPa</td>
<td>30 bar/3000 kPa</td>
<td>-0.8 bar/-80 kPa</td>
</tr>
<tr>
<td>-0.5 ... 0.5 bar/-50 ... 50 kPa</td>
<td>35 bar/3500 kPa</td>
<td>-1 bar/-100 kPa</td>
</tr>
</tbody>
</table>

Absolute pressure

<table>
<thead>
<tr>
<th>Nominal range</th>
<th>Overload, max. pressure</th>
<th>Overload, min. pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ... 0.1 bar/0 ... 10 kPa</td>
<td>15 bar/1500 kPa</td>
<td>0 bar abs.</td>
</tr>
<tr>
<td>0 ... 1 bar/0 ... 100 kPa</td>
<td>35 bar/3500 kPa</td>
<td>0 bar abs.</td>
</tr>
<tr>
<td>0 ... 2.5 bar/0 ... 250 kPa</td>
<td>50 bar/5000 kPa</td>
<td>0 bar abs.</td>
</tr>
<tr>
<td>0 ... 5 bar/0 ... 500 kPa</td>
<td>65 bar/6500 kPa</td>
<td>0 bar abs.</td>
</tr>
<tr>
<td>0 ... 10 bar/0 ... 1000 kPa</td>
<td>90 bar/9000 kPa</td>
<td>0 bar abs.</td>
</tr>
<tr>
<td>0 ... 25 bar/0 ... 2500 kPa</td>
<td>130 bar/13000 kPa</td>
<td>0 bar abs.</td>
</tr>
<tr>
<td>0 ... 60 bar/0 ... 6000 kPa</td>
<td>200 bar/20000 kPa</td>
<td>0 bar abs.</td>
</tr>
</tbody>
</table>

11) Values less than -1 bar cannot be set.
Nominal range

<table>
<thead>
<tr>
<th>Gauge pressure</th>
<th>Overload, max. pressure</th>
<th>Overload, min. pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ... 1.5 psig</td>
<td>200 psig</td>
<td>-3 psig</td>
</tr>
<tr>
<td>0 ... 3 psig</td>
<td>290 psig</td>
<td>-6 psig</td>
</tr>
<tr>
<td>0 ... 6 psig</td>
<td>430 psig</td>
<td>-12 psig</td>
</tr>
<tr>
<td>0 ... 15 psig</td>
<td>500 psig</td>
<td>-15 psig</td>
</tr>
<tr>
<td>0 ... 35 psig</td>
<td>700 psig</td>
<td>-15 psig</td>
</tr>
<tr>
<td>0 ... 70 psig</td>
<td>950 psig</td>
<td>-15 psig</td>
</tr>
<tr>
<td>0 ... 150 psig</td>
<td>1300 psig</td>
<td>-15 psig</td>
</tr>
<tr>
<td>0 ... 350 psig</td>
<td>1900 psig</td>
<td>-15 psig</td>
</tr>
<tr>
<td>0 ... 900 psig</td>
<td>2900 psig</td>
<td>-15 psig</td>
</tr>
<tr>
<td>-15 ... 0 psig</td>
<td>500 psig</td>
<td>-15 psig</td>
</tr>
<tr>
<td>-15 ... 25 psig</td>
<td>700 psig</td>
<td>-15 psig</td>
</tr>
<tr>
<td>-15 ... 70 psig</td>
<td>950 psig</td>
<td>-15 psig</td>
</tr>
<tr>
<td>-15 ... 150 psig</td>
<td>1300 psig</td>
<td>-15 psig</td>
</tr>
<tr>
<td>-15 ... 350 psig</td>
<td>1900 psig</td>
<td>-15 psig</td>
</tr>
<tr>
<td>-15 ... 900 psig</td>
<td>2900 psig</td>
<td>-15 psig</td>
</tr>
<tr>
<td>-0.7 ... 0.7 psig</td>
<td>200 psig</td>
<td>-3 psig</td>
</tr>
<tr>
<td>-1.5 ... 1.5 psig</td>
<td>290 psig</td>
<td>-6 psig</td>
</tr>
<tr>
<td>-3 ... 3 psig</td>
<td>430 psig</td>
<td>-12 psig</td>
</tr>
<tr>
<td>-7 ... 7 psig</td>
<td>500 psig</td>
<td>-15 psig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Absolute pressure</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ... 1.5 psig</td>
<td>200 psig</td>
<td>0 psig</td>
</tr>
<tr>
<td>0 ... 15 psig</td>
<td>500 psig</td>
<td>0 psig</td>
</tr>
<tr>
<td>0 ... 35 psig</td>
<td>700 psig</td>
<td>0 psig</td>
</tr>
<tr>
<td>0 ... 70 psig</td>
<td>900 psig</td>
<td>0 psig</td>
</tr>
<tr>
<td>0 ... 150 psig</td>
<td>1300 psig</td>
<td>0 psig</td>
</tr>
<tr>
<td>0 ... 350 psig</td>
<td>1900 psig</td>
<td>0 psig</td>
</tr>
<tr>
<td>0 ... 900 psig</td>
<td>2900 psig</td>
<td>0 psig</td>
</tr>
</tbody>
</table>

Reference conditions and actuating variables (similar to DIN EN 60770-1)

- **Reference conditions according to DIN EN 61298-1**
 - **Temperature** +15 ... +25 °C (+59 ... +77 °F)
 - **Relative humidity** 45 ... 75 %
 - **Air pressure** 860 ... 1060 mbar/86 ... 106 kPa (12.5 ... 15.4 psig)

- **Determination of characteristics** Limit point adjustment according to IEC 61298-2
- **Characteristics** linear
- **Reference installation position** upright, diaphragm points downward
Influence of the installation position < 0.2 mbar/20 Pa (0.003 psig)

Deviation determined according to the limit point method according to IEC 60770\(^{12}\)

Applies to digital interfaces (HART, Profibus PA, Foundation Fieldbus) as well as to analogue current output 4 ... 20 mA. Specifications refer to the set span. Turn down (TD) is the relation nominal measuring range/set span.

Deviation
- Turn down 1 : 1 up to 5 : 1 < 0.075 %
- Turn down > 5 : 1 < 0.015 % x TD

Deviation with absolute pressure measuring range 0.1 bar
- Turn down 1 : 1 up to 5 : 1 < 0.25 % x TD
- Turn down > 5 : 1 < 0.05 % x TD

Influence of the product or ambient temperature

Applies also to instruments with analogue 4 ... 20 mA current output and refers to the set span.

Thermal change zero signal and output span, reference temperature 20 °C (68 °F):
- In the compensated temperature range 0 ... +100 °C (+32 ... +212 °F) < (0.05 % + 0.1 % x TD)
- Outside the compensated temperature range < (0.05 % + 0.15 % x TD)

Thermal change zero signal and output span with absolute pressure measuring range 0.1 bar, reference temperature 20 °C (68 °F):
- In the compensated temperature range 0 ... +100 °C (+32 ... +212 °F) < (0.1 % + 0.1 % x TD)
- Outside the compensated temperature range < (0.15 % + 0.15 % x TD)

Applies also to instruments with analogue 4 ... 20 mA current output and refers to the set span.

Thermal change, current output < 0.15 % at -40 ... +80 °C (-40 ... +176 °F)

Long-term stability (similar to DIN 16086, DINV 19259-1 and IEC 60770-1)

Applies to digital interfaces (HART, Profibus PA, Foundation Fieldbus) as well as to analogue current output 4 ... 20 mA. Specifications refer to the set span. Turn down (TD) = nominal measuring range/set span.

Long-term drift of the zero signal < (0.1 % x TD)/year

Ambient conditions

Ambient, storage and transport temperature -40 ... +80 °C (-40 ... +176 °F)

\(^{12}\) Incl. non-linearity, hysteresis and non-repeatability.
Process conditions

The specifications to the pressure stage and the product temperature are used as an overview. The specifications of the type label are applicable.

Pressure stage, process fitting
- Thread 316L, Hastelloy
 PN 160
- Small flange DN 10 316L
 PN 1.5

Product temperature depending on the measuring cell seal
- FKM (A+P 70, 16.06)
 -40 ... +120 °C (-40 ... +248 °F)
- FFKM (Kalrez 6375)
 -20 ... +120 °C (-4 ... +248 °F)
- FFKM (Chemraz 535)
 -30 ... +120 °C (-22 ... +248 °F)
- EPDM (A+P 75.5/KW75F)
 -40 ... +120 °C (-40 ... +248 °F)

Vibration capacitance
 mechanical vibrations with 4 g and 5 ... 150 Hz^{13)}

Electromechanical data - version IP 66/IP 67

Cable entry/plug^{14)}
- Single chamber housing
 - 1 x cable gland M20 x 1.5 (cable: ø 5 ... 9 mm),
 1 x blind stopper M20 x 1.5
 or:
 - 1 x closing cap ½ NPT, 1 x blind plug ½ NPT
 or:
 - 1 x plug (depending on the version), 1 x blind stopper M20 x 1.5

- Double chamber housing
 - 1 x cable entry M20 x 1.5 (cable: ø 5 ... 9 mm),
 1 x blind stopper M20 x 1.5; plug M12 x 1 for the external indicating and adjustment module (optional)
 or:
 - 1 x closing cap ½ NPT, 1 x blind stopper ½ NPT, plug M12 x 1 for the external indicating and adjustment module (optional)
 or:
 - 1 x plug (depending on the version), 1 x blind stopper M20 x 1.5; plug M12 x 1 for the external indicating and adjustment module (optional)

Spring-loaded terminals for wire cross-section up to 2.5 mm² (AWG 14)

^{13)} According to IEC 60098-2-6.
^{14)} Depending on the version M12 x 1, according to DIN 43650, Harting, 7/8° FF.
Indicating and adjustment module

- **Voltage supply and data transmission**: through the sensor
- **Indication**: LC display in dot matrix
- **Adjustment elements**: 4 keys
- **Protection**
 - unassembled: IP 20
 - mounted into the sensor without cover: IP 40
- **Materials**
 - Housing: ABS
 - Inspection window: Polyester foil

Power supply

- **Operating voltage**
 - Non-Ex instrument: 9 ... 32 V DC
 - EEx-ia instrument: 9 ... 24 V DC
- **Operating voltage with lighted indicating and adjustment module**
 - Non-Ex instrument: 12 ... 32 V DC
 - EEx-ia instrument: 12 ... 24 V DC
- **Power supply by/max. number of sensors**
 - H1 power supply: max. 32 (max. 10 with Ex)

Electrical protective measures

- **Protection**
 - Housing, standard: IP 66/IP 67\(^{15}\)
- **Overvoltage category**: III
- **Protection class**: II

Approvals

Depending on the version, instruments with approvals can have different technical data. For these instruments, please note the corresponding approval documents. They are included in the scope of delivery.

\(^{15}\) Instruments with gauge pressure measuring ranges cannot detect the ambient pressure when submerged, e.g. in water. This can lead to falsification of the measured value.
10.2 Information on Foundation Fieldbus

Block diagram, measured value processing
The following illustration shows the Transducer Block and Function block in simplified form.

Fig. 16: Transducer Block IPT-1* Vers. 2.0
TB Transducer Block
AI Function Block (AI =Analogue Input)

Diagram, adjustment
The following illustration shows the function of the adjustment:
Fig. 17: Adjustment IPT-1* Vers. 2.0

Parameter list
The following list contains the most important parameters and their meaning:

- primary_value
 - Process Value after min/max-adjustment and linearization. Selected as input to AIFB by setting 'Channel' = 1. Unit derives from 'Primary_value_unit'
- primary_value_unit
 - Unit code of 'Primary_value'
 - %
- secondary_value_1
 - Process pressure. Selected as input to AIFB by setting 'Channel' = 2. Unit derives from 'Secondary_value_1_unit'
 - secondary_value_1_unit
 - Unit code of 'Secondary_value_1'
 - bar, PSI, ..., m, ft, ...; in case of length type engineering unit and access to parameters the corresponding values will be converted by density factor
- secondary_value_2
 - Value after min/max-adjustment. Selected as input to AIFB by setting 'Channel' = 3. Unit derives from 'Secondary_value_2_unit'
 - secondary_value_2_unit
 - Selected unit code for "secondary_value_2"
- sensor_value
 - Raw sensor value, i.e. the uncalibrated measurement value from the sensor. Unit derives from 'Sensor_range.unit'
- sensor_range
 - "Sensor_range.unit' refers to 'Sensor_value', 'Max/Min_peak_sensor_value', 'Cal_point_hi/lo'
 - includes sensor unit: bar, PSI ...; only unit part of DS-68 is writable
- simulate_primary_value
- simulate_secondary_value_1
- simulate_secondary_value_2
- device status
- linearization type
 - Possible types of linearization are: linear, user defined, cylindrical lying container, spherical container
 - "0: ""Linear"" 1: ""User def"" 20: ""Cylindrical lying container"" 21: ""Spherical container"
- curve_points_1_10
 - X and Y values for the user defined linearization curve
- curve_points_11_20
 - X and Y values for the user defined linearization curve
- curve_points_21_30
 - X and Y values for the user defined linearization curve
- curve_points_31_33
 - X and Y values for the user defined linearization curve
- curve status
 - Result of table plausibility check
 - "0: ""Uninitialized"" 1: ""Good"" 2: ""Not monotonous increasing"" 3: ""Not monotonous decreasing"" 4: ""Not enough values transmitted"" 5: ""Too many values transmitted"" 6: ""Gradient of edge too high"" 7: ""Values not excepted"" 8: ""Table currently loaded"" 9: ""Sorting and checking table"
- SUB_DEVICE_NUMBER
- SENSOR_ELEMENT_TYPE
 - 0: "non-specific"
- display_source_selector
 - Selects the type of value that is displayed on the indication-/adjustment-module
- max_peak_sensor_value
 - Holds the maximum sensor value. Write access resets to current value. Unit derives from 'Sensor_range.unit'
 - Write access resets to current value
- min_peak_sensor_value
 - Holds the minimum sensor value. Write access resets to current value. Unit derives from 'Sensor_range.unit'
 - Write access resets to current value
- CAL_POINT_HI
- Highest calibrated value. For calibration of the high limit point you give the high measurement value (pressure) to the sensor and transfer this point as HIGH to the transmitter. Unit derives from 'Sensor_range.unit'
• CAL_POINT_LO
- Lowest calibrated value. For calibration of the low limit point you give the low measurement value (pressure) to the sensor and transfer this point as LOW to the transmitter. Unit derives from 'Sensor_range.unit'
• CAL_MIN_SPAN
- Minimum calibration span value allowed. Necessary to ensure that when calibration is done, the two calibrated points (high and low) are not too close together. Unit derives from 'Sensor_range.unit'
• SCALE_IN
- Min/max-adjustment: Upper and lower calibrated points of the sensor. Unit derives from 'Sensor_range.unit'
• trimmed_value
- Sensor value after the trim processing. Unit derives from 'Sensor_range.unit'
• sensor_sn
- Sensor serial number
• temperature
- Process temperature. Selected as input to AIFB by setting 'Channel' = 4. Unit derives from 'Temperature.unit'
• temperature_unit
 - Unit code of 'Temperature', 'Max/Min_peak_temperature_value'
- °C, °F, K, °R
• max_peak_temperature_value
 - Holds the maximum process temperature. Write access resets to current value. Unit derives from 'Temperature.unit'
- Write access resets to current value
• min_peak_temperature_value
 - Holds the minimum process temperature. Write access resets to current value. Unit derives from 'Temperature.unit'
- Write access resets to current value
10.3 Dimensions

Housing

Fig. 18: Housing versions (with integrated indicating and adjustment module the housing is 9 mm/0.35 in higher)
1 Plastic housing
2 Stainless steel housing
3 Aluminium double chamber housing
4 Aluminium housing

IPT-1* Vers. 2.0 vers. 2.0

Fig. 19: IPT-1* Vers. 2.0 GD = G½ A manometer connection EN 837, ND = ½ NPT
All statements concerning scope of delivery, application, practical use and operating conditions of the sensors and processing systems correspond to the information available at the time of printing.

Subject to change without prior notice

31542-EN-081211