Differential pressure transmitter DPT10 - metal measuring diaphragm
4 ... 20 mA
Contents

1 About this document
1.1 Function ........................................... 4
1.2 Target group .................................... 4
1.3 Symbolism used .................................. 4

2 For your safety
2.1 Authorised personnel ............................... 5
2.2 Appropriate use .................................. 5
2.3 Warning about misuse ............................ 5
2.4 General safety instructions ...................... 5
2.5 Safety label on the instrument ................. 6
2.6 CE conformity .................................... 6
2.7 Fulfillment of NAMUR recommendations ...... 6
2.8 Safety instructions for Ex areas ................. 6
2.9 Safety instructions for oxygen applications ... 6

3 Product description
3.1 Configuration .................................... 7
3.2 Principle of operation ............................ 8
3.3 Operation ......................................... 12
3.4 Packaging, transport and storage ............... 12

4 Mounting
4.1 General instructions ............................... 13
4.2 Special application conditions .................. 14
4.3 Measurement setup flow .......................... 15
4.4 Measurement setup level .......................... 17
4.5 Measurement setup density and interface ...... 22
4.6 Measurement setup differential pressure ....... 24
4.7 Mounting arrangement and connection valve block ... 26
4.8 External housing ................................... 28
4.9 Mounting control ................................... 28

5 Connecting to power supply
5.1 Preparing the connection ......................... 29
5.2 Connection procedure ............................. 30
5.3 Single chamber housing .......................... 33
5.4 Version IP 66/IP 68, 1 bar ....................... 34
5.5 External housing with version IP 68 ............ 34
5.6 Switch on phase .................................... 35

6 Adjustment with the indicating and adjustment module
6.1 Short description .................................. 37
6.2 Insert indicating and adjustment module ...... 37
6.3 Adjustment system ................................ 39
6.4 Set parameters .................................... 40
6.5 Menu schematic ................................... 50
6.6 Saving the parameter adjustment data ........ 54
7 Set up
7.1 Select the mode ........................................ 55
7.2 Flow measurement .................................... 55
7.3 Level measurement .................................... 57
7.4 Density and interface measurement ............... 61
7.5 Differential pressure measurement ................. 61

8 Maintenance and fault rectification
8.1 Maintain .................................................. 64
8.2 Rectify malfunctions .................................. 64
8.3 Instrument repair ...................................... 65

9 Dismounting
9.1 Dismounting steps ...................................... 66
9.2 Dispose .................................................. 66

10 Supplement
10.1 Technical data .......................................... 67
10.2 Dimensions ............................................ 78

Supplementary documentation

Information:
Supplementary documents appropriate to the ordered version come with the delivery. You can find them listed in chapter "Product description".

Instructions manuals for accessories and replacement parts

Tip:
To ensure reliable setup and operation of your instrument, we offer accessories and replacement parts. The corresponding instructions manuals are:

- 31550 - External indicating and adjustment unit
1 About this document

1.1 Function

This operating instructions manual provides all the information you need for mounting, connection and setup as well as important instructions for maintenance and fault rectification. Please read this information before putting the instrument into operation and keep this manual accessible in the immediate vicinity of the device.

1.2 Target group

This operating instructions manual is directed to trained qualified personnel. The contents of this manual should be made available to these personnel and put into practice by them.

1.3 Symbolism used

Information, tip, note
This symbol indicates helpful additional information.

Caution: If this warning is ignored, faults or malfunctions can result.
Warning: If this warning is ignored, injury to persons and/or serious damage to the instrument can result.
Danger: If this warning is ignored, serious injury to persons and/or destruction of the instrument can result.

Ex applications
This symbol indicates special instructions for Ex applications.

• List
The dot set in front indicates a list with no implied sequence.

→ Action
This arrow indicates a single action.

1 Sequence
Numbers set in front indicate successive steps in a procedure.
2 For your safety

2.1 Authorised personnel
Mount and set up the pressure transmitter only if you know the applicable national regulations and have the appropriate qualification. You must be acquainted with the regulations and instructions for hazardous areas, measurement and control technology as well as electrical circuits because the pressure transmitter is "electrical equipment" according to EN 50178. Depending on the application conditions, it is necessary that you have appropriate knowledge, e.g. concerning corrosive products or high pressure.

2.2 Appropriate use
DPT10 is a differential pressure transmitter for measurement of flow, level, differential pressure, density and interface.
You can find detailed information on the application range in chapter "Product description".
Operational reliability is ensured only if the instrument is properly used according to the specifications in the operating instructions manual as well as possible supplementary instructions.
For safety and warranty reasons, any invasive work on the device beyond that described in the operating instructions manual may be carried out only by personnel authorised by the manufacturer. Arbitrary conversions or modifications are explicitly forbidden.

2.3 Warning about misuse
Inappropriate or incorrect use of the instrument can give rise to application-specific hazards, e.g. vessel overfill or damage to system components through incorrect mounting or adjustment.

2.4 General safety instructions
This is a high-tech instrument requiring the strict observance of standard regulations and guidelines. The user must take note of the safety instructions in this operating instructions manual, the country-specific installation standards as well as all prevailing safety regulations and accident prevention rules.
The instrument must only be operated in a technically flawless and reliable condition. The operator is responsible for trouble-free operation of the instrument.
During the entire duration of use, the user is obliged to determine the compliance of the required occupational safety measures with the current valid rules and regulations and also take note of new regulations.
2.5 Safety label on the instrument
The safety approval markings and safety tips on the device must be observed.

2.6 CE conformity
This device fulfills the legal requirements of the applicable EC guidelines. By attaching the CE mark, we provide confirmation of successful testing.

2.7 Fulfillment of NAMUR recommendations
The device fulfills the requirements of the applicable NAMUR recommendations.

2.8 Safety instructions for Ex areas
Please note the Ex-specific safety information for installation and operation in Ex areas. These safety instructions are part of the operating instructions manual and come with the Ex-approved instruments.

2.9 Safety instructions for oxygen applications
For instruments in oxygen applications the special instructions in chapters "Storage and transport", "Mounting" as well as "Technical data" under "Process conditions" must be noted. Furthermore the valid national regulations, implementation instructions and memorandums of the BG (professional assoc.) must be noted.
3 Product description

3.1 Configuration

Scope of delivery

The scope of delivery encompasses:

- DPT10 differential pressure transmitter
- Depending on the version ventilation valves and/or closing screws
- Optional accessory
- Documentation
  - this operating instructions manual
  - Test certificate for pressure transmitters
  - Operating instructions manual "Indicating and adjustment module" (optional)
  - Ex-specific "Safety instructions" (with Ex-versions)
  - if necessary, further certificates

Constituents

The following illustration shows the components of DPT10:

![Diagram of DPT10 components]

Fig. 1: DPT10 in basic version

1 Housing cover, optionally with integrated indicating and adjustment module
2 Housing with electronics
3 Process components with measuring cell

The components are available in different versions.

Type label

The type label contains the most important data for identification and use of the instrument:

- Instrument type
- Article number instrument
- Ex approval
- Technical data: Measuring range, process pressure, process temperature, signal output, voltage supply, protection, protection class
- Order number, serial number instrument
3.2 Principle of operation

Application area

DPT10 is a differential pressure transmitter for measurement of flow, level, differential pressure, density and interface. Measured products are gases, vapours and liquids.

Flow measurement

![Flow measurement diagram]

Fig. 2: Flow measurement with DPT10 and effective pressure transmitter, $Q = \text{flow}$, $\Delta p = \text{differential pressure}$, $\Delta p = p_1 - p_2$

1 Orifice
2 Dynamic pressure probe
Level measurement

Fig. 3: Level measurement with DPT10. \( \Delta p = \text{differential pressure} \), \( \rho = \text{density of the medium} \), \( g = \text{acceleration of gravity} \)

1. Basic version with effective pressure lines
2. Version with flange isolating diaphragm
3. Version with capillaries and cell isolating diaphragms

Differential pressure measurement

Fig. 4: Differential pressure measurement with DPT10

1. Filter
2. DPT10
Density measurement

\[ \varepsilon = \frac{\Delta p}{h \cdot g} \]

Fig. 5: Density measurement with DPT10, \( h \) = defined mounting distance, \( \Delta p \) = differential pressure, \( \rho \) = density of the medium, \( g \) = acceleration of gravity

1 DPT10

Interface measurement

Fig. 6: Interface measurement with DPT10

1 DPT10
2 Liquid with highest density
3 Liquid with lowest density

Functional principle

A metallic measuring cell is used as sensor element. The process pressures are transmitted via separating diaphragms and filling oils to the resistance measuring bridge (semi-conductor technology). The differential-pressure dependent change of the bridge voltage is measured, further processed and converted into a corresponding output signal.
The configuration of the measuring cells differs depending on the measuring range:

![Diagram of a metallic measuring cell with labels](image)

**Fig. 7: Metallic measuring cell 10 mbar and 30 mbar - \( p_1 \) and \( p_2 \) process pressures**

1. Measuring element
2. Silicone diaphragm
3. Separating diaphragm
4. Filling oil
5. Integrated overvoltage arrester

![Diagram of a metallic measuring cell with labels](image)

**Fig. 8: Metallic measuring cell from 100 mbar - \( p_1 \) and \( p_2 \) process pressures**

1. Measuring element
2. Overload diaphragm/Middle diaphragm
3. Filling oil
4. Separating diaphragm

**Voltage supply**

Two-wire electronics 4 … 20 mA for power supply and measured value transmission over the same cable.

The supply voltage range can differ depending on the instrument version. The exact range is stated in chapter "Technical data".

The background lighting of the indicating and adjustment module is powered by the sensor. A certain level of operating voltage is required for this. You can find the exact voltage specifications in chapter "Technical data".
3.3 Operation

DPT10 can be adjusted with different adjustment media:

- with indicating and adjustment module

3.4 Packaging, transport and storage

Packaging

Your instrument was protected by packaging during transport. Its capacity to handle normal loads during transport is assured by a test according to DIN EN 24180.

The packaging of standard instruments consists of environment-friendly, recyclable cardboard. For special versions, PE foam or PE foil is also used. Dispose of the packaging material via specialised recycling companies.

Caution:

Instruments for oxygen applications are sealed in PE foil and provided with a label “Oxygen! Use no Oil”. Remove this foil just before mounting the instrument! See instruction under "Mounting".

Transport

Transport must be carried out under consideration of the notes on the transport packaging. Nonobservance of these instructions can cause damage to the device.

Transport inspection

The delivery must be checked for completeness and possible transit damage immediately at receipt. Ascertained transit damage or concealed defects must be appropriately dealt with.

Storage

Up to the time of installation, the packages must be left closed and stored according to the orientation and storage markings on the outside.

Unless otherwise indicated, the packages must be stored only under the following conditions:

- Not in the open
- Dry and dust free
- Not exposed to corrosive media
- Protected against solar radiation
- Avoiding mechanical shock and vibration

Storage and transport temperature

- Storage and transport temperature see chapter "Supplement - Technical data - Ambient conditions"
- Relative humidity 20 … 85 %
4 Mounting

4.1 General instructions

Suitability for the process conditions

Make sure that all parts of the instrument exposed to the process, in particular the sensor element, process seal and process fitting, are suitable for the existing process conditions. These include above all the process pressure, process temperature as well as the chemical properties of the medium.

You can find the specifications in chapter "Technical data" or on the type label.

Moisture

Use the recommended cables (see chapter "Connecting to power supply") and tighten the cable gland.

You can give your DPT10 additional protection against moisture penetration by leading the connection cable downward in front of the cable entry. Rain and condensation water can thus drain off. This applies mainly to outdoor mounting as well as installation in areas where high humidity is expected (e.g. through cleaning processes) or on cooled or heated vessels.

Ventilation

The ventilation for the electronics housing is realised via a filter element in the vicinity of the cable glands.

Fig. 9: Position of the filter element with single and double chamber housing

1 Filter element for ventilation of the electronics housing
2 Blind stopper

Information:

Make sure that the filter element is always free of buildup during operation. A high-pressure cleaner must not be used for cleaning.

Effective pressure lines

You find general recommendations for wiring of effective pressure lines in DIN 19210 "Effective pressure lines for flow systems" or the corresponding national or international standards. When wiring effective pressure lines outdoors, keep in mind to use a suitable antifreeze, e.g. by using tube heat tracing. Wire effective pressure lines with a monotonic decrease of at least 10 %.
Vibrations

In case of strong vibrations at the application position, the instrument version with external electronics should be used.

Temperature limits

Higher process temperatures often mean also higher ambient temperatures for electronics and connection cable. Make sure that the upper temperature limits stated in chapter "Technical data" for the environment of the electronics housing and connection cable are not exceeded.

4.2 Special application conditions

Oxygen applications

Oxygen and other gases can be explosive with oils, grease and plastics so that the following provisions must also be taken:

- All components of the plant, such as e.g. measuring instruments must be cleaning according to the requirements of BAM (DIN 19247)
- Depending on the materials used, a certain max. temperature and pressure must not be exceeded in oxygen applications

Danger:

Instruments for oxygen applications must be unpacked just before mounting. After removing the protective cover of the process fitting, the label "O₂" will be visible on the process fitting. Penetration of oil, grease and dirt should be avoided. Danger of explosion!

Pure gas applications

We also offer oil and grease free instruments for special applications such as e.g. ultra-pure gas. There are no special restrictions with respect to the process conditions.
4.3 Measurement setup flow

In gases

→ Mount DPT10 above the measurement loop so that condensate can drain off in the process cable.

![Diagram showing measurement setup, flow measurement in gases]

**Fig. 10: Measurement setup, flow measurement in gases**

1. DPT10
2. 3-fold valve block
3. Blocking valves
4. Orifice or impact pressure probe

In vapours

→ Mount DPT10 below the measurement loop
→ Mount condensate vessels at the same height with the discharge socket and at the same distance to DPT10
→ For measurements in products with solid content such as e.g. dirty liquids, the installation of separators and drain valves is recommended to enable collection and removal of debris and sediment.
→ Fill the effective pressure lines to the height of the condensate vessels before setup
In liquids

- Mount DPT10 below the measurement loop so that the effective pressure lines are always filled with liquid and gas bubbles can bubble up to the process line.
- For measurements in products with solid content such as e.g. dirty liquids, the installation of separators and drain valves is recommended to enable collection and removal of debris and sediment.
- Fill the effective pressure lines to the height of the condensate vessels before setup.
Fig. 12: Measurement setup, flow measurement in liquids
1 Orifice or impact pressure probe
2 Blocking valves
3 DPT10
4 Precipitator
5 Drain valves
6 3-fold valve block

4.4 Measurement setup level

In open vessels with effective pressure line
→ Mount DPT10 below the lower measurement connection so that the effective pressure lines are always filled with liquid
→ Minus side is open to the atmospheric pressure
→ For measurements in products with solid content such as e.g. dirty liquids, the installation of separators and drain valves is recommended to enable collection and removal of debris and sediment.

![Diagram](image)

Fig. 13: Measurement setup, level measurement in the open vessel
1 DPT10
2 Minus side is open to the atmospheric pressure
3 Blocking valve
4 Precipitator
5 Drain valve

In open vessels with unilateral pressure transmitter

→ Mount DPT10 directly to the vessel
→ Minus side is open to the atmospheric pressure

![Diagram](image)

Fig. 14: Measurement setup, level measurement in the open vessel
1 DPT10
2 Minus side is open to the atmospheric pressure
In closed vessels with effective pressure lines

→ Mount DPT10 below the lower measurement connection so that the effective pressure lines are always filled with liquid
→ Connect minus side always above the max. level
→ For measurements in products with solid content such as e.g. dirty liquids, the installation of separators and drain valves is recommended to enable collection and removal of debris and sediment.

![Diagram of measurement setup](image)

Fig. 15: Measurement setup, level measurement in closed vessel
1 Blocking valves
2 DPT10
3 Precipitator
4 Drain valves
5 3-fold valve block

In closed vessels with unilateral pressure transmitter

→ Mount DPT10 directly to the vessel
→ Connect minus side always above the max. level
→ For measurements in products with solid content such as e.g. dirty liquids, the installation of separators and drain valves is recommended to enable collection and removal of debris and sediment.
Fig. 16: Measurement setup, level measurement in closed vessel
1 Blocking valve
2 Precipitator
3 Drain valve
4 DPT10

In closed vessels with bilateral pressure transmitter

→ Mount DPT10 below the lower isolating diaphragm
→ The ambient temperature should be the same for both capillaries

Information:
Level measurement is only ensured between the upper edge of the lower and the lower edge of the upper pressure transmitter.

Fig. 17: Measurement setup, level measurement in closed vessel
1 DPT10

In closed vessels with steam layering with effective pressure line

→ Mount DPT10 below the lower measurement connection so that the effective pressure lines are always filled with liquid
→ Connect minus side always above the max. level
→ The condensate vessel ensures a constant pressure on the minus side
→ For measurements in products with solid content such as e.g. dirty liquids, the installation of separators and drain valves is recommended to enable collection and removal of debris and sediment.

![Diagram](image)

**Fig. 18: Measurement setup in closed vessel with superimposed steam**

1. Condensate vessel
2. Blocking valves
3. DPT10
4. Precipitator
5. Drain valves
6. 3-fold valve block

**In closed vessels with steam layering with unilateral pressure transmitter**

→ Mount DPT10 directly to the vessel
→ Connect minus side always above the max. level
→ The condensate vessel ensures a constant pressure on the minus side
→ For measurements in products with solid content such as e.g. dirty liquids, the installation of separators and drain valves is recommended to enable collection and removal of debris and sediment.
Fig. 19: Measurement setup in closed vessel with superimposed steam

1 Condensate vessel
2 Blocking valve
3 Precipitator
4 Drain valve
5 DPT10

4.5 Measurement setup density and interface

Density and interface measurement are carried out in level measurement mode.

**Density measurement**

→ Mount DPT10 below the lower isolating diaphragm
→ The ambient temperature should be the same for both capillaries

**Information:**

The density measurement is only ensured at a level above the upper measuring point. Homogeneous density allocation is a prerequisite.

Fig. 20: Measurement setup with density measurement. Density 1 and \( h = 0.3 \) m means \( \Delta p = 29.4 \) mbar. With density change: e.g. measured \( \Delta p = 35.3 \) mbar corresponds to density 1.2, measured \( \Delta p = 23.5 \) mbar corresponds to density 0.8
Interface measurement

- Mount DPT10 below the lower isolating diaphragm
- The ambient temperature should be the same for both capillaries

**Information:**
An interface measurement is only possible if the densities of the two media remain the same and the interface is between the two measurement points. The total level must be above the upper measurement point.

![Diagram](image)

Fig. 21: Measurement setup with interface measurement. Min. adjustment with filling complete with density 0.8 (Δp = 23.5 mbar), max. adjustment with filling complete with density 1.0 (Δp = 29.4 mbar)
4.6 Measurement setup differential pressure

In gases and vapours

→ Mount DPT10 above the measurement loop so that condensate can drain off in the process cable.

Fig. 22: Measurement setup, differential pressure measurement in gases and vapours

1  DPT10
2  3-fold valve block
3  Blocking valves
4  E.g. filter

In liquids

→ Mount DPT10 below the measurement loop so that the effective pressure lines are always filled with liquid and gas bubbles can bubble up to the process line.

→ For measurements in products with solid content such as e.g. dirty liquids, the installation of separators and drain valves is recommended to enable collection and removal of debris and sediment.
**In gases, vapours and liquids**

- Mount isolating diaphragm with capillaries on top or laterally on the pipeline.
- In vacuum applications: Mount DPT10 below the measurement loop.
- The ambient temperature should be the same for both capillaries.

---

**Fig. 23: Measurement setup, flow measurement in liquids**

1. E.g. filter
2. Blocking valves
3. DPT10
4. Precipitator
5. Drain valves
6. 3-fold valve block

**Fig. 24: Measurement setup, differential pressure measurement in gases, vapours and liquids**

1. Isolating diaphragm with bolting
2. Capillaries
3. E.g. filter
4. DPT10
4.7 Mounting arrangement and connection valve block

Mounting arrangement

The following illustration shows the elements for a tube mounting and an example for a mounting arrangement with valve block.

Fig. 25: Mounting arrangement with tube mounting

1 Strap for tube mounting
2 Mounting bracket
3 Ventilation valve
4 Fixing screws
5 DPT10
6 PTFE seal
7 3-fold valve block
8 Oval flange adapter
9 Fixing screws
Connection valve block

The following illustration shows the connection of a 5-fold valve block.

Fig. 26: Connection of a 5-fold valve block

1  Process
2  Process
3  Purging
4  Purging
5  DPT10
6  PTFE seal
7  5-fold valve block
8 Oval flange adapter
9 Fixing screws

### 4.8 External housing

#### Wall mounting

1. Mark the holes according to the following drilling template
2. Depending on the mounting surface, fasten the wall mounting plate with 4 screws

![Drilling template - wall mounting plate](image)

*Fig. 27: Drilling template - wall mounting plate*

Mount the wall mounting plate so that the cable entry of the socket housing points downward. The socket housing can be displaced by 180° to the wall mounting plate.

### 4.9 Mounting control

Check the following after mounting the instrument:

- Did you tighten all screws?
- Closing screws and ventilation valves closed
5 Connecting to power supply

5.1 Preparing the connection

Always keep in mind the following safety instructions:

- Connect only in the complete absence of line voltage
- If overvoltage surges are expected, overvoltage arresters should be installed

In hazardous areas you should take note of the appropriate regulations, conformity and type approval certificates of the sensors and power supply units.

Power supply and current signal are transmitted via the same two-wire connection cable. The supply voltage range can differ depending on the instrument version. The exact range is stated in the "Technical data" in the "Supplement".

Provide a reliable separation between the supply circuit and the mains circuits according to DIN VDE 0106 part 101.

Keep in mind the following additional influences on the operating voltage:

- Output voltage of the power supply unit can be lower under nominal load (with a sensor current of 20.5 mA or 22 mA in case of fault message)
- Influence of additional instruments in the circuit (see load values in chapter "Technical data")

The instrument is connected with standard two-wire cable without screen. If electromagnetic interference is expected which is above the test values of EN 61326 for industrial areas, screened cable should be used.

Use cable with round cross-section. A cable outer diameter of 5 … 9 mm (0.2 … 0.35 in) ensures the seal effect of the cable gland. If you are using cable with a different diameter or cross-section, exchange the seal or use a suitable cable gland.

If screened cable is necessary, connect the cable screen on both ends to ground potential. In the sensor, the screen must be connected directly to the internal ground terminal. The ground terminal on the outside of the housing must be connected to the potential equalisation (low impedance).

If potential equalisation currents are expected, the connection on the processing side must be made via a ceramic capacitor (e. g. 1 nF, 1500 V). The low frequency potential equalisation currents are thus suppressed, but the protective effect against high frequency interference signals remains.
Take note of the corresponding installation regulations for Ex applications. In particular, make sure that no potential equalisation currents flow over the cable screen. In case of grounding on both sides this can be achieved by the use of a capacitor or a separate potential equalisation.

### 5.2 Connection procedure

**Single/Double chamber housing**

Proceed as follows:

1. Unscrew the housing cover
2. If an indicating and adjustment module is installed, remove it by turning it slightly to the left.
3. Loosen compression nut of the cable entry
4. Remove approx. 10 cm of the cable mantle, strip approx. 1 cm insulation from the individual wires
5. Insert the cable through the cable gland into the sensor
6. Lift the opening levers of the terminals with a screwdriver (see following illustration)
7. Insert the wire ends into the open terminals according to the wiring plan
8. Press down the opening levers of the terminals, you will hear the terminal spring closing
9. Check the hold of the wires in the terminals by lightly pulling on them
10. Connect the screen to the internal ground terminal, connect the outer ground terminal with potential equalisation
11. Tighten the compression nut of the cable entry. The seal ring must completely encircle the cable
12. Screw the housing cover on
The electrical connection is finished.

**Fig. 28: Connection steps 6 and 7**

**IP 68 version with external housing**

Proceed as follows:

1. Loosen the four screws on the housing base with an Allen key size 4.

Differential pressure transmitter DPT10 - metal measuring diaphragm • 4 ... 20 mA
2 Remove the housing socket from the mounting plate

Fig. 29: Components of the external housing
1 Screw
2 Wall mounting plate
3 Cable gland

3 Loop the connection cable through the cable entry on the housing base\(^1\)

**Information:**
The cable gland can be mounted in three positions each displaced by 90°. Simply exchange the cable gland against the blind plug in the suitable thread opening.

4 Connect the wire ends as described under "Single/Double chamber housing" according to the numbering

5 Connect the screen to the internal ground terminal, connect the outer ground terminal above on the housing to potential equalisation

6 Tighten the compression nut of the cable entry. The seal ring must completely encircle the cable

7 Attach the mounting plate again and tighten the screws
The electrical connection of the sensor to the external housing is hence ready.

\(^1\) The connection cable is already preconfectioned. If necessary, shorten it to the requested length, cut the breather capillaries clean. Remove approx. 5 cm of the cable mantle, strip approx. 1 cm insulation from the ends of the individual wires. After shortening the cable, fasten the type plate with support back onto the cable.
5.3 Single chamber housing

Electronics and connection compartment

Fig. 30: Electronics and connection compartment with single chamber housing
1 Spring-loaded terminals for voltage supply
2 Ground terminal for connection of the cable screen

Wiring plan

Fig. 31: Wiring plan, single chamber housing
1 Voltage supply/Signal output
5.4 Version IP 66/IP 68, 1 bar

![Wire assignment, connection cable diagram]

Fig. 32: Wire assignment, connection cable
1 brown (+) and blue (-) to power supply or to the processing system
2 Shielding

5.5 External housing with version IP 68

![Electronics and connection compartment diagram]

Fig. 33: Electronics and connection compartment
1 Spring-loaded terminals for voltage supply
2 Ground terminal for connection of the cable screen
3 Cable gland to the sensor
Fig. 34: Connection of the sensor in the housing socket

1 Brown
2 Blue
3 Yellow
4 White
5 Shielding

Fig. 35: Wiring plan external electronics

1 Voltage supply

5.6 Switch on phase

Switch on phase

After connecting DPT10 to power supply or after a voltage recurrence, the instrument carries out a self-check for approx. 30 seconds:

- Internal check of the electronics
• Indication of the instrument type, the firmware as well as the sensor TAGs (sensor designation)
• Output signal jumps briefly (approx. 10 seconds) to the set fault current

Then the corresponding current is outputted to the cable (the value corresponds to the actual level as well as the settings already carried out, e.g. factory setting).
6 Adjustment with the indicating and adjustment module

6.1 Short description

The indicating and adjustment module is used for measured value display, adjustment and diagnosis. It can be mounted in the following housing versions and instruments:

- All sensors of the IPT-1* instrument family, in the single as well as double chamber housing (optionally in the electronics or connection compartment)
- External indicating and adjustment unit

Note:
You can find detailed information on adjustment in the operating instructions manual "Indicating and adjustment module".

6.2 Insert indicating and adjustment module

The indicating and adjustment module can be inserted and removed at any time. It is not necessary to interrupt the voltage supply.

For installation, proceed as follows:

1. Unscrew the housing cover
2. Place the indicating and adjustment module in the desired position on the electronics (you can choose any one of four different positions - each displaced by 90°)
3. Press the indicating and adjustment module onto the electronics and turn it to the right until it snaps in.
4. Screw housing cover with inspection window tightly back on

Removal is carried out in reverse order.

The indicating and adjustment module is powered by the sensor, an additional connection is not necessary.
Note:
If you intend to retrofit the instrument with an indicating and adjustment module for continuous measured value indication, a higher cover with an inspection glass is required.
6.3 Adjustment system

The sensor is adjusted via the four keys of the indicating and adjustment module. The LC display indicates the individual menu items. The functions of the individual keys are shown in the above illustration. Approx. 10 minutes after the last pressing of a key, an automatic reset to measured value indication is triggered. Any values not confirmed with [OK] will not be saved.

Fig. 37: Indicating and adjustment elements
1 LC display
2 Indication of the menu item number
3 Adjustment keys

Key functions
- **[OK] key:**
  - Move to the menu overview
  - Confirm selected menu
  - Edit parameter
  - Save value
- **[->] key to select:**
  - menu change
  - list entry
  - Select editing position
- **[+] key:**
  - Change value of the parameter
- **[ESC] key:**
  - interrupt input
  - jump to the next higher menu

Adjustment system
6.4 Set parameters

**Introduction**

DPT10 has general adjustment parameters which are also used for other measuring principles as well as instrument-specific adjustment parameters. The general adjustment parameters are described in the operating instructions manual "Indicating and adjustment module".

The instrument-specific adjustment parameters are described in this chapter.

**Information:**

If the adjustment limits of the adjustment parameters are exceeded, the message "Outside parameter limits" appears. The editing procedure can be aborted with [ESC] or the displayed limit value can be accepted with [OK].

**Application**

DPT10 can be used for differential pressure, level as well as flow measurement. The delivery status is level measurement. The selection is made in the menu item "Application". Depending on the selected application, the adjustment is carried out as zero/span or min./max. adjustment.

Proceed as follows to switch over to the application differential pressure or flow measurement:

1. Push the [OK] button in the measured value display, the menu overview is displayed.

   ▶ Basic adjustment
   Display
   Diagnostics
   Service
   Info

2. Confirm the menu "Basic adjustment" with [OK].

3. Confirm the menu item "Application" with [OK].

**Warning:**

Note the warning: "Output can change".

4. Select with [->] "OK" and confirm with [OK].

5. Select the requested application in the selection list, for example "Flow" and confirm with [OK].
In this menu item you select the adjustment unit as well as the unit for the temperature indication in the display.

To select the adjustment unit (in the example switching over from mbar to bar), proceed as follows:

1. Push the [OK] button in the measured value display, the menu overview is displayed.

2. Confirm the menu "Basic adjustment" with [OK], the menu item "Unit" will be displayed.

3. Activate the selection with [OK] and select "Units of measurement" with [->].

4. Activate the selection with [OK] and select the requested unit with [->] (in the example bar).

5. Confirm with [OK] and move to position correction with [->].

The adjustment unit is thus switched over from mbar to bar.

**Information:**
When switching over to adjustment in a height unit (for example for level measurement), the density also has to be entered.

Proceed as follows to enter the density:

1. Push the [OK] button in the measured value display, the menu overview is displayed.

2. Confirm the menu "Basic adjustment" with [OK], the menu item "Units of measurement" will be displayed.

3. Activate the selection with [OK] and select the requested unit with [->] (in the example m).

4. Confirm with [OK], the submenu "Density unit" appears.

5. Select the requested unit, e.g. kg/dm³ with [->] and confirm with [OK], the submenu "Density" appears.
6 Enter the requested density value with [-] and [+], confirm with [OK] and move to position correction with [-].

The adjustment unit is thus switched over from bar to m.

Proceed as follows to select the temperature unit:

→ Activate the selection with [OK] and select "Temperature unit" with [-].
→ Activate the selection with [OK] and select the requested unit with [-] (e.g. °F).
→ Confirm with [OK].

The temperature unit is hence switched over from °C to °F.

**Position correction**

The position correction compensates the influence of the installation position of the instrument on the measured value. In this menu item, the offset value as well as the current measured value are displayed.

Proceed as follows:

1 Activate in the menu item "Position correction" the selection with [OK].

2 Select with [-], e.g. to accept the actual measured value 0.0035 bar.

3 Confirm with [OK].

4 Move to min. (zero) adjustment with [-].

The current measured value was corrected to 0, the corrective value is available in the display as offset value with sign reversal.
If a known value should be taken over as position correction which is not the current value, then you have to select the function "Edit" and enter the requested value.

**Zero adjustment with differential pressure**

In this menu item, the min. differential pressure is entered.

Proceed as follows:

1. Edit the bar value in the menu item "zero" with [OK].

2. Set the requested value with [+ ] and [- ].
3. Confirm with [OK] and move to span adjustment with [->].

For an adjustment with pressure, simply enter the actual measured value indicated at the bottom of the display.

The zero adjustment is finished.

**Information:**
The zero adjustment shifts the value of the span adjustment. The span, i.e. the difference between these values, however, remains unchanged.

**Span adjustment with differential pressure**

In this menu item, the max. differential pressure is entered.

Proceed as follows:

1. Edit the bar value in the menu item "span" with [OK].

2. Set the requested value with [+ ] and [- ].
3. Confirm with [OK] and move to the menu overview with [ESC].

For an adjustment with pressure, simply enter the actual measured value indicated at the bottom of the display.

The span adjustment is finished.

**Information:**
When the instrument is not yet adjusted, then the display pressure for 100% corresponds to the nominal measuring range of the sensor (in the above example 500 mbar).
Min. adjustment with level

Proceed as follows:

1. Edit the % value in the menu item "Min. adjustment" with [OK].

   ![Min. adjustment](image)

   Min. adjustment
   0.00 %
   =
   0.0000 bar
   0.0000 bar

2. Set the requested value with [+ ] and [->].
3. Confirm with [OK] and edit the requested bar value.
4. Set the requested bar value with [+ ] and [->].
5. Confirm with [OK] and move to max. adjustment with [->].

For an adjustment with filling, simply enter the actual measured value indicated at the bottom of the display.

The min. adjustment is finished.

Max. adjustment with level

Proceed as follows:

1. Edit the % value in the menu item "Max. adjustment" with [OK].

   ![Max. adjustment](image)

   Max. adjustment
   100.00 %
   =
   0.5000 bar
   0.0000 bar

Information:

When the instrument is not yet adjusted, then the display pressure for 100 % corresponds to the nominal measuring range of the sensor (in the above example 500 mbar).

2. Set the requested value with [->] and [OK].
3. Edit the requested mbar value with [OK].
4. Set the requested value with [+ ] and [->].
5. Confirm with [OK] and move to the menu overview with [ESC].

For an adjustment with filling, simply enter the actual measured value indicated at the bottom of the display.

The max. adjustment is finished.

Min. adjustment with flow

Proceed as follows:

1. Edit the bar value in the menu item "Min. adjustment" with [OK].

   ![Min. adjustment](image)

   Min. adjustment
   0.00 %
   =
   0.0000 bar
   0.0000 bar

Information:

When the instrument is not yet adjusted, then the display pressure for 100 % corresponds to the nominal measuring range of the sensor (in the above example 500 mbar).

2. Set the requested value with [->] and [OK].
3. Edit the requested mbar value with [OK].
4. Set the requested value with [+ ] and [->].
5. Confirm with [OK] and move to max. adjustment with [->].

For an adjustment with filling, simply enter the actual measured value indicated at the bottom of the display.

The min. adjustment is finished.
2 Set the requested bar value with [+].
3 Confirm with [+].

For an adjustment with flow, simply enter the actual measured value indicated at the bottom of the display.

**Information:**
The DPT10 is also suitable for bidirectional flow measurement (flow in both directions). The selection is carried out in the menu item "Linearization curve". With the bidirectional flow measurement, the min. adjustment value must be equal to the negative max. adjustment value.

Example: Max. adjustment value **+100 mbar**, as min. adjustment value, **-100 mbar** must hence be entered.

The min. adjustment is finished.

### Max. adjustment with flow

**Proceed as follows:**

1 Edit the bar value in the menu item "Max. adjustment" with [OK].

2 Set the requested mbar value with [->].
3 Confirm with [OK] and move to the menu overview with [ESC].

For an adjustment with flow, simply enter the actual measured value indicated at the bottom of the display.

The max. adjustment is finished.

**Information:**
When the instrument is not yet adjusted, then the display pressure for 100 % corresponds to the nominal measuring range of the sensor (in the above example 500 mbar).

### Linearization curve with level

For level measurement, a linearization is necessary for all vessels in which the vessel volume does not increase linearly with the level - e.g. in a cylindrical or spherical tank - and the indication or output of the volume is requested.

Respective linearisation curves are stored for these vessels. They indicate the relation between the percentage level and the vessel volume. By activating the suitable curve, the percentage vessel volume is displayed correctly.
Enter the requested parameter via the appropriate keys, save your settings and jump to the next menu item with the [\textasciitilde] key.

**Leak flow volume suppression with flow**

In some applications, small flow quantities should not be detected. With the creeping quantity suppression, the flow value can be suppressed up to a certain % value. The default value is 5 % of the max. flow value, corresponding to 0.25 % of the max. differential pressure value. The limit value is 50 %. This function depends on the selected linearization function and is only available with root extracted characteristics.

The square root/bidirectional square root characteristics is very steep at the zero point. This means that small changes in the measured differential pressure cause big changes in the output signal. The leak volume suppression stabilizes the signal output.

**Total amounts counter and subtotalizer with flow**

The DPT10 has two internal totalizers. For both you can adjust volume or mass as count function as well as separately the unit.

Proceed as follows:

1. Select, for example, menu item "Part sum counter".

2. Activate the function "Modify settings?" with [OK].

3. Confirm with [OK] "Effective pressure transmitter".

4. Select the requested variable with [\textasciitilde] and confirm with [OK].

5. Select calibration unit of the effective pressure transmitter with [\textasciitilde], for example m³/s and confirm with [OK].
Edit with [OK] and set the requested values with [+> and [->].

Confirm with [OK] and jump back to the indication of the part sum counter.

Select with [->] the unit of the sum counter, adjust the requested unit with [->, for example m$^3$/s and confirm with [OK].

The setting of the part sum counter is hence terminated, the counting function is activated.

The procedure of the total sum counter is the same.

**Copy sensor data**

This function enables uploading parameter adjustment data into the Indicating and adjustment module as well as downloading parameter adjustment data into the sensor. A detailed description of the function is available in the operating instructions manual *"Indicating and adjustment module"*.

The following data are loaded or downloaded with this function:

- Measured value presentation
- Application
- Adjustment
- Damping
- Linearisation curve
- Leak volume suppression
- Sensor-TAG
- Displayed value
- Display unit
- Scaling
- Current output
- Unit of measurement
- Language

The following safety-relevant data are **not** uploaded or downloaded:

- HART mode
- PIN

**Reset**

**Basic adjustment**

The reset *"Basic adjustment"* resets the values of the following menu items to the reset values (see chart):
<table>
<thead>
<tr>
<th>Menu section</th>
<th>Menu item</th>
<th>Reset value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic settings</td>
<td>Unit of measurement</td>
<td>bar</td>
</tr>
<tr>
<td></td>
<td>Temperature unit</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Zero/Min. adjustment</td>
<td>Measuring range begin</td>
</tr>
<tr>
<td></td>
<td>Span/Max. adjustment</td>
<td>Measuring range end</td>
</tr>
<tr>
<td></td>
<td>Density</td>
<td>1 kg/l</td>
</tr>
<tr>
<td></td>
<td>Density unit</td>
<td>kg/l</td>
</tr>
<tr>
<td></td>
<td>Damping</td>
<td>1 s</td>
</tr>
<tr>
<td></td>
<td>Linearisation</td>
<td>linear</td>
</tr>
<tr>
<td></td>
<td>Sensor-TAG</td>
<td>Sensor</td>
</tr>
<tr>
<td>Display</td>
<td>Display value</td>
<td>Differential pressure</td>
</tr>
<tr>
<td></td>
<td>Display unit</td>
<td>Mass/kg</td>
</tr>
<tr>
<td></td>
<td>Scaling</td>
<td>0.00 to 100.0</td>
</tr>
<tr>
<td></td>
<td>Decimal point indication</td>
<td>8888.8</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>Total sum counter</td>
<td>0.0000 10⁰° gal</td>
</tr>
<tr>
<td></td>
<td>Part sum counter</td>
<td>0.0000 10⁰° gal</td>
</tr>
<tr>
<td>Service</td>
<td>Current output - characteristics</td>
<td>4 … 20 mA</td>
</tr>
<tr>
<td></td>
<td>Current output - failure mode</td>
<td>&lt; 3.6 mA</td>
</tr>
<tr>
<td></td>
<td>Current output - min. current</td>
<td>3.8 mA</td>
</tr>
<tr>
<td></td>
<td>Current output - max. current</td>
<td>20.5 mA</td>
</tr>
</tbody>
</table>

The values of the following menu items are not reset with "Reset:

<table>
<thead>
<tr>
<th>Menu section</th>
<th>Menu item</th>
<th>Reset value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic settings</td>
<td>Application</td>
<td>no reset</td>
</tr>
<tr>
<td></td>
<td>Position correction</td>
<td>no reset</td>
</tr>
<tr>
<td>Display</td>
<td>Lighting</td>
<td>no reset</td>
</tr>
<tr>
<td>Service</td>
<td>Language</td>
<td>no reset</td>
</tr>
</tbody>
</table>

**Pointer**
The min. and max. temperature or pressure values are each reset to the actual value.

**Totalizer**
The total and part sum counter are reset to zero.
Optional settings

Additional adjustment and diagnosis options such as e.g. scaling, simulation or trend curve presentation are shown in the following menu schematic. You will find a detailed description of these menu items in the operating instructions manual "Indicating and adjustment module".
6.5 Menu schematic

**Information:**
Depending on the version and application, the highlighted menu windows are not always available.

### Basic adjustment differential pressure

- **Application**
  - 1.1
    - Differential pressure

- **Span**
  - 1.4
    - 100.00 %
      - =
        - 0.5000 bar
        - 0.0000 bar

- **Damping**
  - 1.5
    - 1 s

- **Position correction**
  - 1.2
    - Offset
      - =
        - -0.0035 bar
        - 0.0000 bar

- **Diagnostics**
  - 2

- **Service**
  - 3

- **Info**
  - 4

### Basic adjustment flow

- **Application**
  - 1.1
    - Flow

- **Max. adjustment**
  - 1.4
    - 100.00 %
      - =
        - 0.5000 bar
        - 0.0000 bar

- **Damping**
  - 1.5
    - 1 s

- **Position correction**
  - 1.2
    - Offset
      - =
        - -0.0035 bar
        - 0.0000 bar

- **Min. adjustment**
  - 1.3
    - 000.0 %
      - =
        - 0.0000 bar
        - 0.0000 bar

- **Linearisation curve**
  - 1.6
    - Linear
    - Cylindrical tank
    - Spherical tank
    - User programmable

- **Sensor-TAG**
  - 1.7
    - Sensor

- **Sensor**
  - 1.8

---

**Note:**

6. Adjustment with the indicating and adjustment module

**Diagram:**

- 37243-EN-100120
Basic setting level

1.1 Application
   Level ▼

1.1 Unit
   Unit of measurement ▼
   bar ▼
   Temperature unit ▼
   °C ▼

1.2 Position correction
   Offset ▼
   = -0.0035 bar
   0.0000 bar

1.3 Min. adjustment
   000.0 %
   =
   0.0000 bar
   0.0000 bar

1.4 Max. adjustment
   100.00 %
   =
   0.5000 bar
   0.0000 bar

1.5 Damping
   1 s

1.6 Linearisation curve
   ▼
   linear
   Cylindrical tank
   Spherical tank
   User programmable

1.7 Sensor-TAG
   Sensor

Display

2.1 Displayed value
   Differential pressure ▼

2.1 Displayed value
   Scaled ▼

2.2 Display unit
   Volume ▼

2.3 Scaling
   0 % = 0.0
   100 % = 100.0

2.4 Lighting
   Switched off ▼
Diagnose

Basic adjustment
Display
Diagnostics
Service
Info

3.1 Pointer
p-min.: -5.8 mbar
p-max.: 167.5 mbar
T-min.: -12.5 °C
T-max.: +85.5 °C

3.2 Sensor status
OK

3.3 Trend curve
Start trend curve?

3.4 Total sum counter
0.0000 10^10
gal
Modify settings?

Service

Basic adjustment
Display
Diagnostics
Service
Info

4.1 Current output
Output mode: 4-20 mA▼
Fail.mode: < 3.6 mA▼
Min. current: 3.8 mA▼
max. current: 20.5 mA▼

4.2 Simulation
Start simulation▼

4.3 Reset
Select reset▼

4.4 Language
Deutsch▼

4.5 Copy sensor data
Copy sensor data?

4.6 PIN
Enable?
Info

Basic adjustment  Display  Diagnostics  Service  Info

Instrument type 5.1
Serial number 12345678

Date of manufacture 5.2
23rd October 2009
Software version 1.01

Last change using PC 5.3
23rd October 2009

Sensor characteristics 5.4
Display now?

Differential pressure transmitter DPT10 - metal measuring diaphragm • 4 … 20 mA
6.6 Saving the parameter adjustment data

It is recommended noting the adjusted data, e.g. in this operating instructions manual and archive them afterwards. They are hence available for multiple use or service purposes.

If DPT10 is equipped with an indicating and adjustment module, the most important data can be read out of the sensor into indicating and adjustment module. The procedure is described in the operating instructions manual "Indicating and adjustment module" in the menu item "Copy sensor data". The data remain there permanently even if the sensor power supply fails.

If it is necessary to exchange the sensor, the indicating and adjustment module is inserted into the replacement instrument and the data are written into the sensor under the menu item "Copy sensor data".
7 Set up

7.1 Select the mode

The following modes can be adjusted on DPT10:

- Flow measurement
- Level measurement
- Differential pressure measurement

7.2 Flow measurement

Instructions

In flow measurement, normally DPT10 is used without isolating diaphragm.

Before adjusting DPT10, you have to clean the effective pressure lines and the instrument must be filled with the medium.

Installation for gases

![Diagram of flow measurement installation](image)

Fig. 38: Preferred installation for gases

I  DPT10
II 3-fold valve block
2.4 Inlet valves
3 Breather valve
6.7 Vent valves on DPT10
A, B Blocking valves

Differential pressure transmitter DPT10 - metal measuring diaphragm • 4 ... 20 mA
Installation for liquids

![Diagram of installation for liquids]

**Fig. 39: Preferred installation for liquids**

1. **DPT10**
2. **3-fold valve block**
3. **Precipitator**
4. **Drain valves**
5. **Inlet valves**
6. **Breather valve**
7. **Vent valves on DPT10**
8. **A, B** Blocking valves

Prepare the adjustment

Proceed as follows:

1. Close valve 3
2. Fill measuring system with medium.
   - Open valves A, B, 2, 4: Medium flows in
   - If necessary, clean the differential pressure lines: - with gases by blowing out with compressed air - with liquids by rinsing.  
   - For this purpose close valve 2 and 4, i.e. block the instrument.
   - Then open valve 1 and 5 so that the effective pressure lines blow out/rinse.
   - After cleaning, close valves 1 and 5
3. Remove air from instrument:
   - Open valves 2 and 4: Medium flows in
   - Close valve 4: Minus side will be closed
   - Open valve 3: Equalisation plus and minus side
   - Briefly open valve 6 and 7, then close again: Fill the measuring instrument completely with the medium and remove air

2) Arrangement with 5 valves.
4

Carry out a position correction if the following conditions apply. If the conditions are not fulfilled, then carry out the position correction after step 6.

Conditions:
The process cannot be sealed off.
The pressure extraction points (A and B) are at the same geodesic height.

5

Put measurement loop into operation:
Close valve 3: Separate plus and minus side
Open valve 4: Connect minus side

Now:
Valves 1, 3, 5, 6 and 7 are closed
Valves 2 and 4 open
Valves A and B open (if available)

6

Carry out position correction, if flow can be blocked. In this case, step 5 is deleted.

Then carry out adjustment, see chapter "Set parameters".

7.3 Level measurement

Instructions

For level measurements, the DPT10 in all versions is used.

DPT10 with bilateral isolating diaphragm CSB is immediately ready for operation.

The DPT10 without isolating diaphragm or with unilateral isolating diaphragm CSS is ready for operation after opening a possibly available block valve.

Before you adjust DPT10 without isolating diaphragm or with unilateral isolating diaphragm, the effective pressure lines must be cleaned and the instrument filled with the medium.

3) Valves 1, 3, 5: Configuration with 5 valves.
Installation for open vessels

Fig. 40: Preferred installation for open vessels

I  DPT10
II Precipitator
1 Drain valve
6,7 Vent valves on DPT10
A Blocking valve

Prepare the adjustment Proceed as follows:

1 Fill the vessel to just over the lower tap.
2 Fill measuring system with medium.
   Open valve A: Medium flows in.
3 Vent instrument
   Briefly open valve 6, then close it: Fill the measuring instrument completely with the medium and remove air.
4 Set measurement loop to operation
   Now:
   Valve A open and valve 6 closed
   Then carry out adjustment, see below.
Installation for closed vessels

**Fig. 41: Preferred installation for closed vessels**

I DPT10  
II 3-fold valve block  
III Precipitator  
1, 5 Drain valves  
2, 4 Inlet valves  
6, 7 Vent valves on DPT10  
A, B Blocking valves

**Prepare the adjustment**  
Proceed as follows:

1 Fill the vessel to just above the lower tap  
2 Fill measuring system with medium  
   Close valve 3: Separate plus and minus side  
   Open valve A and B: Open block valves  
3 Vent plus side (probably empty minus side)  
   Open valve 2 and 4: Discharge medium on the plus side  
   Briefly open valve 6 and 7, then close again: Fill the plus side completely with the medium and remove air.  
4 Set measurement loop to operation  
   Now:  
   Valve 3, 6 and 7 are closed  
   Valves 2, 4, A and B are open  
   Then carry out adjustment, see below.
Installation for closed vessels with steam layer

Fig. 42: Preferred installation for closed vessels with steam overlay

I  DPT10
II  3-fold valve block
III  Precipitator
IV  Condensate vessel
1, 5 Drain valves
2, 4 Inlet valves
3  Breather valve
6, 7 Vent valves on DPT10
A, B Blocking valves

Prepare the adjustment

Proceed as follows:

1  Fill the vessel to just above the lower tap
2  Fill measuring system with medium
   Open valve A and B: Open block valves
   Fill the minus effective pressure line on the height of the condensation pot
3  Remove air from instrument:
   Open valve 2 and 4: Discharge medium
   Open valve 3: Equalisation plus and minus side
   Briefly open valve 6 and 7, then close again: Fill the measuring instrument completely with the medium and remove air
4  Put measurement loop into operation:
   Close valve 3: Separate plus and minus side
   Open valve 4: Connect minus side
Now:
Valve 3, 6 and 7 are closed
Valves 2, 4, A and B are open.
Then carry out adjustment, see chapter "Set parameters".

### 7.4 Density and interface measurement

For density and interface measurements, DPT10 with bilateral isolating diaphragm CSB is used.

DPT10 in this version is immediately ready for operation.

### 7.5 Differential pressure measurement

**Instructions**

For differential pressure measurements, DPT10 without isolating diaphragm or with bilateral isolating diaphragm CSB is used.

DPT10 with bilateral isolating diaphragm CSB is immediately ready for operation.

Before adjusting DPT10 without isolating diaphragm, the effective pressure lines must be cleaned and the instrument filled with medium.

**Installation for gases**

![Diagram](image)

*Fig. 43: Preferred installation for gases*

1. DPT10
2. 4 Inlet valves
3. Breather valve
6. 7 Vent valves on DPT10
A. B Blocking valves

Differential pressure transmitter DPT10 - metal measuring diaphragm • 4 ... 20 mA
Installation for liquids

\[\text{Fig. 44: Preferred installation for liquids}\]

I  DPT10
II  3-fold valve block
III  Precipitator
1.5  Drain valves
2.4  Inlet valves
3  Breather valve
6, 7  Vent valves on DPT10
A, B  Blocking valves

Prepare the adjustment

Proceed as follows:

1  Close valve 3
2  Fill measuring system with medium.
   Open valves A, B, 2, 4: Medium flows in.
   If necessary, clean the differential pressure lines: - with gases by blowing out with compressed air - with liquids by rinsing.
   Close valve 2 and 4, block the instrument
   Open valve 1 and 5
   Close valve 1 and 5
3  Remove air from instrument:
   Open valves 2 and 4: Medium flows in
   Close valve 4: Minus side will be closed
   Open valve 3: Equalisation plus and minus side
   Briefly open valve 6 and 7, then close again: Fill the measuring instrument completely with the medium and remove air
4  Put measurement loop into operation:
   Close valve 3: Separate plus and minus side

\(^4\)  Arrangement with 5 valves.
Open valve 4: Connect minus side

Now:
Valves 1, 3, 5, 6 and 7 are closed\textsuperscript{5)
Valves 2 and 4 open
Valves A and B open (if available)

Then carry out adjustment, see chapter "Set parameters".

\textsuperscript{5) Valves 1, 3, 5: Configuration with 5 valves.}
8 Maintenance and fault rectification

8.1 Maintain

Maintenance

When the instrument is used properly, no special maintenance is required in normal operation.

In some applications, product buildup on the separating diaphragms can influence the measuring result. Depending on the sensor and application, take precautions to ensure that heavy buildup, and especially a hardening thereof, is avoided.

8.2 Rectify malfunctions

Reaction when malfunctions occur

The operator of the system is responsible for taking suitable measures to rectify malfunctions.

Causes of malfunction

DPT10 offers maximum reliability. Nevertheless, faults can occur during operation. These may be caused by the following, e.g.:

- Sensor
- Process
- Voltage supply
- Signal processing

Fault rectification

The first measures to be taken are to check the output signals as well as to evaluate the error messages via the indicating and adjustment module. The procedure is described below. Further comprehensive diagnostics can be carried out on a PC with the software PACTware and the suitable DTM. In many cases, the causes can be determined this way and faults rectified.

Checking the 4 … 20 mA signal

Connect a handheld multimeter in the suitable measuring range according to the wiring plan.

? 4 … 20 mA signal not stable
- Level fluctuations
  → Set the integration time via the indicating and adjustment module or PACTware

? 4 … 20 mA signal missing
- Wrong connection to power supply
  → Check connection according to chapter "Connection steps" and if necessary, correct according to chapter "Wiring plan"
- No power supply
  → Check cables for breaks; repair if necessary
- Operating voltage too low or load resistance too high
  → Check, adapt if necessary
? Current signal greater than 22 mA or less than 3.6 mA
  • electronics module or measuring cell defective
  → Exchange the instrument or send it in for repair

In Ex applications, the regulations for the wiring of intrinsically safe circuits must be observed.

Fault messages via the indicating/adjustment module

? E013
  • no measured value available\(^6\)
  → Exchange the instrument or send it in for repair

? E017
  • Adjustment span too small
  → repeat with modified values

? E036
  • no operable sensor software
  → Carry out a software update or send instrument for repair

? E041
  • Hardware error
  → Exchange the instrument or send it in for repair

Reaction after fault rectification

Depending on the failure reason and measures taken, the steps described in chapter "Set up" must be carried out again, if necessary.

8.3 Instrument repair

You can download a return form (24 KB) in the Internet from our homepage www.wika.com under the item "Service".

If a repair is necessary, please proceed as follows:

• Print and fill out one form per instrument
• If necessary, state a contamination
• Clean the instrument and pack it damage-proof
• Attach the completed form and probably a safety data sheet to the instrument
• Please contact the agency serving you for the address of the return shipment

By doing this you help us carry out the repair quickly and without having to call back for needed information.

\(^6\) Fault message can also appear if the pressure is higher than the nominal range.
9 Dismounting

9.1 Dismounting steps

Warning:
Before dismounting, be aware of dangerous process conditions such as e.g. pressure in the vessel, high temperatures, corrosive or toxic products etc.

Take note of chapters "Mounting" and "Connecting to power supply" and carry out the listed steps in reverse order.

9.2 Dispose

The instrument consists of materials which can be recycled by specialised recycling companies. We use recyclable materials and have designed the electronics to be easily separable.

WEEE directive 2002/96/EG
This instrument is not subject to the WEEE directive 2002/96/EG and the respective national laws. Pass the instrument directly on to a specialised recycling company and do not use the municipal collecting points. These may be used only for privately used products according to the WEEE directive.

Correct disposal avoids negative effects to persons and environment and ensures recycling of useful raw materials.

Materials: see chapter "Technical data"

If you have no possibility to dispose of the old instrument professionally, please contact us concerning return and disposal.
# 10 Supplement

## 10.1 Technical data

### General data

<table>
<thead>
<tr>
<th>Pressure type</th>
<th>Differential pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring principle</td>
<td>Piezoresistive</td>
</tr>
<tr>
<td>Communication interface</td>
<td>None</td>
</tr>
</tbody>
</table>

### Materials and weights

**Material 316L corresponds to stainless steel 1.4404 or 1.4435**

**Materials, wetted parts**

- Process fitting with lateral flanges: C22.8, 316L, Alloy C276
- Separating diaphragm: 316L, Alloy C-276, Tantalum, Alloy C-276 gold-rhodium coated
- Seal: FKM (Viton), FKM cleaned from oil and grease, FKM for oxygen application, PTFE, PTFE for oxygen application, NBR, copper, copper for oxygen application
- Closing screws: 316L

**Internal transmission liquid**

- Synthetic oil, Halocarbon oil

**Materials, non-wetted parts**

- Electronics housing: Plastic PBT (polyester), Alu die-casting powder-coated
- External electronics housing: plastic PBT (Polyester)
- Socket, wall mounting plate external electronics housing: plastic PBT (Polyester)
- Seal between housing socket and wall mounting plate: TPE (fixed connected)
- Seal ring, housing cover: Silicone
- Inspection window in housing cover for indicating and adjustment module: Polycarbonate (UL-746-C listed)
- Ground terminal: 316Ti/316L
- Connection cable with version IP 68 (1 bar): PE, PUR, FEP
- Connection between IP 68 transmitter and external electronics housing: PUR
- Type plate support with IP 68 version on cable: PE hard

---

7) Halocarbon oil generally with oxygen applications, not with vacuum and absolute pressure measuring range < 1 bar$_{abs}$.
Max. torque screws mounting strap: 30 Nm
Max. torque screws socket external housing: 5 Nm (3.688 lbf ft)
Weight approx.: 4.2 … 4.5 kg (9.26 … 9.92 lbs), depending on process fitting

**Output variable**

<table>
<thead>
<tr>
<th>Output variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output signal</td>
<td>4 … 20 mA</td>
</tr>
<tr>
<td>Signal resolution</td>
<td>1.6 µA</td>
</tr>
<tr>
<td>Failure signal output current</td>
<td>mA-value unchanged 20.5 mA, 22 mA, &lt; 3.6 mA (adjustable)</td>
</tr>
<tr>
<td>Max. output current</td>
<td>22 mA</td>
</tr>
<tr>
<td>Load</td>
<td>see load diagram under Power supply</td>
</tr>
<tr>
<td>Fulfilled NAMUR recommendations</td>
<td>NE 43</td>
</tr>
</tbody>
</table>

**Dynamic behaviour output**

Run-up time: \( \leq 20 \text{ s} \)

*Fig. 45: Presentation of the dead time \( t_1 \) and the time constant \( t_2 \)*

The following specified total dead time applies to the 4 … 20 mA current output:

<table>
<thead>
<tr>
<th>Version, nominal measuring range</th>
<th>Dead time ( t_1 )</th>
<th>Time constant ( t_2 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic version 10 bar and 30 bar</td>
<td>100 ms</td>
<td>250 ms</td>
</tr>
<tr>
<td>Basic version 100 mbar</td>
<td>100 ms</td>
<td>180 ms</td>
</tr>
<tr>
<td>Basic version 500 mbar</td>
<td>100 ms</td>
<td>180 ms</td>
</tr>
<tr>
<td>Basic version, 3 bar</td>
<td>100 ms</td>
<td>180 ms</td>
</tr>
<tr>
<td>Basic version 16 bar and 40 bar</td>
<td>100 ms</td>
<td>180 ms</td>
</tr>
<tr>
<td>Isolating diaphragm version, all nominal measuring ranges</td>
<td>Depending on the isolating diaphragm</td>
<td>Depending on the isolating diaphragm</td>
</tr>
</tbody>
</table>
Damping (63 % of the input variable) 0 ... 999 s, adjustable

**Input variable**

<table>
<thead>
<tr>
<th>Measured variable</th>
<th>Differential pressure, flow and level derived from it</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Nominal range</th>
<th>Lower measurement limit</th>
<th>Upper measuring limit</th>
<th>Smallest adjustable span</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mbar (1 kPa)</td>
<td>-10 mbar (-1 kPa)</td>
<td>+10 mbar (+1 kPa)</td>
<td>0.25 mbar (25 Pa)</td>
</tr>
<tr>
<td>30 mbar (3 kPa)</td>
<td>-30 mbar (-3 kPa)</td>
<td>+30 mbar (+3 kPa)</td>
<td>0.3 mbar (30 Pa)</td>
</tr>
<tr>
<td>100 mbar (10 kPa)</td>
<td>-100 mbar (-10 kPa)</td>
<td>+100 mbar (+10 kPa)</td>
<td>1 mbar (100 Pa)</td>
</tr>
<tr>
<td>500 mbar (50 kPa)</td>
<td>-500 mbar (-50 kPa)</td>
<td>+500 mbar (+50 kPa)</td>
<td>5 mbar (500 Pa)</td>
</tr>
<tr>
<td>3 bar (300 kPa)</td>
<td>-3 bar (-300 kPa)</td>
<td>+3 bar (+300 kPa)</td>
<td>30 mbar (3 kPa)</td>
</tr>
<tr>
<td>16 bar (1600 kPa)</td>
<td>-16 bar (-1600 kPa)</td>
<td>+16 bar (+1600 kPa)</td>
<td>160 mbar (16 kPa)</td>
</tr>
<tr>
<td>40 bar (4000 kPa)</td>
<td>-40 bar (-4000 kPa)</td>
<td>+40 bar (+4000 kPa)</td>
<td>400 mbar (40 kPa)</td>
</tr>
</tbody>
</table>

**Reference conditions and actuating variables (similar to DIN EN 60770-1)**

Reference conditions according to DIN EN 61298-1

- Temperature +18 ... +30 °C (+64 ... +86 °F)
- Relative humidity 45 ... 75 %
- Air pressure 860 ... 1060 mbar/86 ... 106 kPa (12.5 ... 15.4 psig)

**Determination of characteristics** Limit point adjustment according to IEC 61298-2

**Characteristics** linear

**Position of the measuring cell** constant, in the range: horizontal ±1°

**Span** based on the zero point

**Diaphragm material** 316L, Alloy C276, gold rhodium plated, Monel

**Filling oil** Silicone oil

**Material, lateral flanges** 316L

**Influence of the installation position basic version** 

A position-dependent zero-point shift can be corrected (see also chapter "General installation instructions" and "Installation instructions, isolating diaphragm systems").

**Deviation determined according to the limit point method according to IEC 60770\(^{10}\)**

Applies to digital interfaces (HART, Profibus PA, Foundation Fieldbus) as well as to analogue current output 4 ... 20 mA. Specifications refer to the set span. Turn down (TD) is the ratio nominal measuring range/set span.

---

\(^{8}\) Instrument is rotated vertically to the diaphragm axis.

\(^{9}\) For instruments with inert oil, the value doubles.

\(^{10}\) Incl. non-linearity, hysteresis and non-repeatability.
Reference accuracy - all versions

The following applies to square root extracted characteristics: The accuracy data of DPT10 are entered with factor 0.5 in the accuracy calculation of the flow.

Reference accuracy - Basic version

10 mbar, 30 mbar measuring cell
- Turn down 1 : 1 ±0.15 % of the set span
- Turn down > 1 : 1 ±0.15 % of the set span x TD

100 mbar measuring cell
- Turn down 1 : 1 up to 4 : 1 ±0.075 % (±0.05 %) of the set span
- Turn down > 4 : 1 ±(0.012 % x TD + 0.027) of the set span

Measuring cells ≥ 500 mbar
- Turn down 1 : 1 up to 15 : 1 ±0.075 % (±0.05 %) of the set span
- Turn down > 15 : 1 ±(0.0015 % x TD + 0.053) of the set span

Reference accuracy - Isolating diaphragm versions

100 mbar measuring cell
- Turn down 1 : 1 up to 4 : 1 ±0.075 % (±0.05 %) of the set span + influence of the isolating diaphragm
- Turn down > 4 : 1 ±(0.012 % x TD + 0.027) of the set span + influence of isolating diaphragm

Measuring cells ≥ 500 mbar
- Turn down 1 : 1 up to 15 : 1 ±0.075 % (±0.05 %) of the set span + influence of the isolating diaphragm
- Turn down > 15 : 1 ±(0.0015 % x TD + 0.053) of the set span + influence of the isolating diaphragm

Influence of the product or ambient temperature

Applies to instruments in basic version with digital signal output (HART, Profinbus PA, Foundation Fieldbus) as well as to instruments with analogue current output 4 ... 20 mA. Specifications refer to the set span. Turn down (TD) = nominal measuring range/set span.

<table>
<thead>
<tr>
<th>Temperature range</th>
<th>Measuring range</th>
<th>Thermal changes of the zero signal and the output span relating to the adjusted span</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10 ... +60 °C (+14 ... +140 °F)</td>
<td>10 mbar, 30 mbar</td>
<td>±(0.31 x TD + 0.06) %</td>
</tr>
<tr>
<td></td>
<td>100 mbar</td>
<td>±(0.18 x TD + 0.02) %</td>
</tr>
<tr>
<td></td>
<td>500 mbar, 3 bar</td>
<td>±(0.08 x TD + 0.05) %</td>
</tr>
<tr>
<td></td>
<td>16 bar</td>
<td>±(0.1 x TD + 0.1) %</td>
</tr>
<tr>
<td></td>
<td>16 bar</td>
<td>±(0.08 x TD + 0.05) %</td>
</tr>
<tr>
<td>-40 ... +10 °C (-40 ... +50 °F) +60 ... +85 °C (+140 ... +185 °F)</td>
<td>10 mbar, 30 mbar</td>
<td>±(0.45 x TD + 0.1) %</td>
</tr>
<tr>
<td></td>
<td>100 mbar</td>
<td>±(0.3 x TD + 0.15) %</td>
</tr>
<tr>
<td>Temperature range</td>
<td>Measuring range</td>
<td>Thermal changes of the zero signal and the output span relating to the adjusted span</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>--------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 mbar, 3 bar</td>
<td>±(0.12 x TD + 0.1) %</td>
<td></td>
</tr>
<tr>
<td>16 bar</td>
<td>±(0.15 x TD + 0.2) %</td>
<td></td>
</tr>
<tr>
<td>40 bar</td>
<td>±(0.37 x TD + 0.1) %</td>
<td></td>
</tr>
</tbody>
</table>

Applies also to instruments with analogue 4 ... 20 mA current output and refers to the set span.
Thermal change, current output
< 0.15 % at -40 ... +80 °C (-40 ... +176 °F)

**Influence of the system pressure on the zero point and span**

**316L, Alloy C276-**, Alloy C276 gold-rhodium coated diaphragm

<table>
<thead>
<tr>
<th>Measuring cell</th>
<th>10 mbar</th>
<th>30 mbar</th>
<th>100 mbar</th>
<th>500 mbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influence of the system pressure to the zero point</td>
<td>±0.15 % of URL/7 bar</td>
<td>±0.35 % of URL/70 bar</td>
<td>±0.15 % of URL/70 bar</td>
<td>±0.075 % of URL/70 bar</td>
</tr>
<tr>
<td>Influence of the system pressure to the span</td>
<td>±0.035 % of URL/7 bar</td>
<td>±0.14 % of URL/70 bar</td>
<td>±0.14 % of URL/70 bar</td>
<td>±0.14 % of URL/70 bar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measuring cell</th>
<th>3 bar</th>
<th>16 bar</th>
<th>40 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influence of the system pressure to the zero point</td>
<td>±0.075 % of URL/7 bar</td>
<td>±0.075 % of URL/70 bar</td>
<td>±0.075 % of URL/70 bar</td>
</tr>
<tr>
<td>Influence of the system pressure to the span</td>
<td>±0.14 % of URL/7 bar</td>
<td>±0.14 % of URL/70 bar</td>
<td>±0.14 % of URL/70 bar</td>
</tr>
</tbody>
</table>

**Tantalum diaphragm**

<table>
<thead>
<tr>
<th>Measuring cell</th>
<th>10 mbar</th>
<th>30 mbar</th>
<th>100 mbar</th>
<th>500 mbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influence of the system pressure to the zero point</td>
<td>±0.28 % of URL/7 bar</td>
<td>±0.70 % of URL/70 bar</td>
<td>±0.42 % of URL/70 bar</td>
<td>±0.14 % of URL/70 bar</td>
</tr>
<tr>
<td>Influence of the system pressure to the span</td>
<td>±0.28 % of URL/7 bar</td>
<td>±0.70 % of URL/70 bar</td>
<td>±0.42 % of URL/70 bar</td>
<td>±0.14 % of URL/70 bar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measuring cell</th>
<th>3 bar</th>
<th>16 bar</th>
<th>40 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influence of the system pressure to the zero point</td>
<td>±0.14 % of URL/7 bar</td>
<td>±0.14 % of URL/70 bar</td>
<td>±0.14 % of URL/70 bar</td>
</tr>
</tbody>
</table>
The influence of the system pressure to the span:

<table>
<thead>
<tr>
<th>Measuring cell</th>
<th>3 bar</th>
<th>16 bar</th>
<th>40 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influence of the system pressure to the span</td>
<td>±0.14 % of URL/7 bar</td>
<td>±0.14 % of URL/70 bar</td>
<td>±0.14 % of URL/70 bar</td>
</tr>
</tbody>
</table>

**Total accuracy**

**Total Performance - Basic version**

The specification "Total Performance" comprises non-linearity incl. hysteresis and non-repeatability, thermal change of the zero point and static pressure influence (p_{at} = 70 bar).

Total Performance:
- 316L, Alloy, gold-rhodium diaphragm: ±0.15 % of the set span
- Tantalum diaphragm: ±0.30 % of the set span

**Total Error - basic version**

The specification "Total Error" comprises the longterm stability and the total performance.

<table>
<thead>
<tr>
<th>Diaphragm material</th>
<th>Measuring range</th>
<th>Total Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>316L-, Alloy-, Gold-Rhodium</td>
<td>&lt; 500 mbar</td>
<td>0.33 % of the measuring range end value/year</td>
</tr>
<tr>
<td></td>
<td>from 500 mbar</td>
<td>0.20 % of the measuring range final value</td>
</tr>
<tr>
<td>Tantalum</td>
<td>&lt; 500 mbar</td>
<td>0.48 % of the measuring range end value/year</td>
</tr>
<tr>
<td></td>
<td>from 500 mbar</td>
<td>0.35 % of the measuring range end value/year</td>
</tr>
</tbody>
</table>

**Heating time - all versions**

Warm-up time ≤ 10 s

**Long-term stability (similar to DIN 16086, DINV 19259-1 and IEC 60770-1)**

Applies to digital interfaces (HART, Proibus PA, Foundation Fieldbus) as well as to analogue current output 4 ... 20 mA. Specifications refer to the set span. Turn down (TD) = nominal measuring range/set span.

Measuring cells ≥ 500 mbar: ±0.05 % of the nominal measuring range/year, ±0.125 % of the nominal measuring range/5 years

Measuring cells ≤ 500 mbar: ±0.18 % of the nominal measuring range/year

---

1) For measuring ranges ≥ 500 mbar up to TD 2 : 1
2) All specifications apply to the temperature range +10 ... +60 °C (+50 ... +140 °F).
3) For measuring ranges ≥ 500 mbar up to TD 2 : 1
4) All specifications apply to the temperature range +10 ... +60 °C (+50 ... +140 °F).
### Ambient conditions

<table>
<thead>
<tr>
<th>Standard version</th>
<th>-40 ... +80 °C (-40 ... +176 °F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version for oxygen applications(^{15})</td>
<td>-40 ... +60 °C (-40 ... +140 °F)</td>
</tr>
<tr>
<td>Versions IP 66/IP 68 (1 bar) connection cable PE</td>
<td>-20 ... +60 °C (-4 ... +140 °F)</td>
</tr>
<tr>
<td>Versions IP 66/IP 68 (1 bar) and IP 68, connection cable PUR</td>
<td>-20 ... +80 °C (-4 ... +176 °F)</td>
</tr>
</tbody>
</table>

### Process conditions

The pressure and temperature specifications are used as overview. In general, the max. pressure for the pressure transmitter depends on the weakest (with regard to pressure) link. In detail, the respective specifications of the type label apply.

**Process temperature limits, basic version as well as minus side with version with unilateral isolating diaphragm\(^{16}\)\(^{17}\)**

- With effective pressure lines longer than 100 mm
  - -40 ... +120 °C (-40 ... +248 °F)
- With effective pressure lines longer than 100 mm, process fitting steel C22.8
  - -10 ... +120 °C (+14 ... +248 °F)

<table>
<thead>
<tr>
<th>Seal material</th>
<th>Temperature limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FKM</td>
<td>-20 ... +85 °C (-4 ... +185 °F)</td>
</tr>
<tr>
<td>PTFE</td>
<td>-40 ... +85 °C (-40 ... +185 °F)</td>
</tr>
<tr>
<td>NBR</td>
<td>-20 ... +85 °C (-4 ... +185 °F)</td>
</tr>
<tr>
<td>Copper</td>
<td>-40 ... +85 °C (-40 ... +185 °F)</td>
</tr>
<tr>
<td>Copper, cleaned for oxygen application</td>
<td>-20 ... +60 °C (-4 ... +140 °F)</td>
</tr>
<tr>
<td>FKM, oil and grease-free</td>
<td>-10 ... +85 °C (+14 ... +185 °F)</td>
</tr>
<tr>
<td>FKM, cleaned for oxygen application</td>
<td>-10 ... +60 °C (-4 ... +140 °F)</td>
</tr>
<tr>
<td>PTFE, cleaned for oxygen application</td>
<td>-20 ... +60 °C (-4 ... +140 °F)</td>
</tr>
</tbody>
</table>

### Process pressure limits

<table>
<thead>
<tr>
<th>Nominal range</th>
<th>Nominal pressure</th>
<th>Overload unilateral</th>
<th>Overload bilateral</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mbar (1 kPa)</td>
<td>160 bar (16000 kPa)</td>
<td>160 bar (16000 kPa)</td>
<td>240 bar (24000 kPa)</td>
</tr>
<tr>
<td>30 mbar (3 kPa)</td>
<td>160 bar (16000 kPa)</td>
<td>160 bar (16000 kPa)</td>
<td>240 bar (24000 kPa)</td>
</tr>
</tbody>
</table>

\(^{15}\) Up to 60 °C (140 °F).

\(^{16}\) For measuring cells with PN 420 a lower temperature application limit of -10 °C (+14 °F) applies.

\(^{17}\) For the version for oxygen application, note chapter "Oxygen applications".
<table>
<thead>
<tr>
<th>Nominal range</th>
<th>Nominal pressure</th>
<th>Overload unilateral</th>
<th>Overload bilateral</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mbar (10 kPa)</td>
<td>160 bar (16000 kPa)</td>
<td>160 bar (16000 kPa)</td>
<td>240 bar (24000 kPa)</td>
</tr>
<tr>
<td>500 mbar (50 kPa)</td>
<td>160 bar (16000 kPa)</td>
<td>160 bar (16000 kPa)</td>
<td>240 bar (24000 kPa)</td>
</tr>
<tr>
<td>3 bar (300 kPa)</td>
<td>160 bar (16000 kPa)</td>
<td>160 bar (16000 kPa)</td>
<td>240 bar (24000 kPa)</td>
</tr>
<tr>
<td>16 bar (1600 kPa)</td>
<td>160 bar (16000 kPa)</td>
<td>160 bar (16000 kPa)</td>
<td>240 bar (24000 kPa)</td>
</tr>
<tr>
<td>40 bar (4000 kPa)</td>
<td>160 bar (16000 kPa)</td>
<td>Plus side: 160 bar (16000 kPa)</td>
<td>240 bar (24000 kPa)</td>
</tr>
</tbody>
</table>

Min. system pressure with all measuring ranges
0.1 mbar_{abs} (10 Pa_{abs})

Vibration resistance
mechanical vibrations with 4 g and 5 ... 100 Hz^{18)

Shock resistance
Acceleration 100 g/6 ms^{19)

Electromechanical data - version IP 66/IP 67

Cable entry/plug^{20)

- Single chamber housing
  - 1 x cable gland M20 x 1.5 (cable: ø 5 ... 9 mm),
  - 1 x blind stopper M20 x 1.5
  or:
  - 1 x closing cap ½ NPT, 1 x blind plug ½ NPT
  or:
  - 1 x plug (depending on the version), 1 x blind stopper M20 x 1.5
  or:
  - 2 x blind stopper M20 x 1.5

Spring-loaded terminals for wire cross-section
< 2.5 mm² (AWG 14)

Electromechanical data - version IP 66/IP 68 (1 bar)

Cable entry

---

^{18) Tested according to the directives of the German Lloyd, GL directive 2. Not in the case of double chamber housing of precision cast stainless steel.
^{19) Tested according to EN 60068-2-27.
^{20) Depending on the version M12 x 1, according to DIN 43650, Harting, 7/ 8" FF.
- Single chamber housing ● 1 x IP 68 cable gland M20 x 1.5; 1 x blind stopper M20 x 1.5

or:
- 1 x closing cap ½ NPT, 1 x blind plug ½ NPT

Connection cable
- Configuration four wires, one suspension cable, one breather capillary, screen braiding, metal foil, mantle
- Wire cross-section 0.5 mm² (AWG 20)
- Wire resistance < 0.036 Ω/m (0.011 Ω/ft)
- Tensile strength > 1200 N (270 pounds force)
- Standard length 5 m (16.4 ft)
- Max. length 1000 m (3281 ft)
- Min. bending radius at 25 °C/77 °F 25 mm (0.985 in)
- Diameter approx. 8 mm (0.315 in)
- Colour - standard PE Black
- Colour - standard PUR Blue
- Colour - Ex-version Blue

Electromechanical data - version IP 66/IP 68 with external electronics

Connection cable between IP 68 instrument and external housing:
- Configuration Four wires, screen braiding, inner cover, screen braiding, outer cover
- Wire cross-section 0.5 mm² (AWG 20)
- Standard length 5 m (16.40 ft)
- Max. length 25 m (82.02 ft)
- Min. bending radius at 25 °C/77 °F 25 mm (0.985 in)
- Diameter approx. 8 mm (0.315 in)
- Colour Blue

Cable entry/plug\(^{21}\)
- External housing ● 2 x cable gland M20 x 1.5 (cable: ø 5 ... 9 mm), 1 x blind stopper M20 x 1.5

or:
- 1 x cable gland M20 x 1.5, 1 x plug (depending on version), 1 x blind stopper M20 x 1.5

Spring-loaded terminals for wire cross-section up to 2.5 mm² (AWG 14)

Indicating and adjustment module
Voltage supply and data transmission through the sensor
Indication LC display in dot matrix

\(^{21}\) Depending on the version M12 x 1, according to DIN 43650, Harting, 7/8° FF.
Adjustment elements  
4 keys

Protection rating

- unassembled  
  IP 20
- mounted into the sensor without cover  
  IP 40

Materials

- Housing  
  ABS
- Inspection window  
  Polyester foil

Voltage supply

Operating voltage

- Non-Ex instrument  
  12 ... 36 V DC
- EEx-ia instrument  
  12 ... 30 V DC
- Exd instrument  
  18 ... 36 V DC

Operating voltage with lighted indicating and adjustment module

- Non-Ex instrument  
  20 ... 36 V DC
- EEx-ia instrument  
  20 ... 30 V DC
- EEx-d-ia instrument  
  20 ... 36 V DC

Permissible residual ripple

- < 100 Hz  
  $U_{ss} < 1$ V
- 100 Hz ... 10 kHz  
  $U_{ss} < 10$ mV

Load  
see diagram

---

Fig. 46: Voltage diagram

1 Voltage limit EEx-ia instrument
2 Voltage limit non-Ex/Exd instrument
3 Operating voltage

Electrical protective measures

Protection rating
- Housing, standard: IP 66/IP 67\(^{22}\)
- Aluminium and stainless housing (optionally available): IP 68 (1 bar)\(^{23}\)
- Process component in IP 68 version: IP 68
- External housing: IP 65

**Overvoltage category**
- III

**Protection class**
- II

**Approvals**

Depending on the version, instruments with approvals can have different technical data. For these instruments, please note the corresponding approval documents. They are included in the scope of delivery.

---

\(^{22}\) Instruments with gauge pressure measuring ranges cannot detect the ambient pressure when submerged, e.g. in water. This can lead to falsification of the measured value.

\(^{23}\) Only with instruments with absolute pressure ranges.
10.2 Dimensions

Plastic housing

1 Single chamber version
2 Double chamber version

Aluminium housing

1 Single chamber version
2 Double chamber version
Aluminium housing in protection rating IP 66/IP 68 (1 bar)

1 Single chamber version, Aluminium
4 Double chamber housing Aluminium

Version IP 68 with external electronics

1 Lateral cable outlet
2 Axial cable outlet
Oval flange, connection ¼-18 NPT or RC ¼

![Diagram of Oval Flange with Dimensions](image)

Fig. 51: Top: 10 mbar and 30 mbar measuring cell. Bottom: Measuring cell ≥ 100 mbar

<table>
<thead>
<tr>
<th>Version</th>
<th>Connection</th>
<th>Fastening</th>
<th>Material</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>1/4-18 NPT</td>
<td>7/16-20 UNF</td>
<td>Steel C 22.8</td>
<td>incl. 2 vent valves (316L)</td>
</tr>
<tr>
<td></td>
<td>IEC 61518</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1/4-18 NPT</td>
<td>7/16-20 UNF</td>
<td>AISI 316L</td>
<td>incl. 2 vent valves (316L)</td>
</tr>
<tr>
<td></td>
<td>IEC 61518</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>1/4-18 NPT</td>
<td>7/16-20 UNF</td>
<td>Alloy C276</td>
<td>without valves/closing screws</td>
</tr>
<tr>
<td></td>
<td>IEC 61518</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Version Connection Fastening Material Equipment

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>RC 1/4</td>
<td>7/16-20 UNF</td>
<td>AISI 316L</td>
<td>incl. 2 vent valves</td>
</tr>
<tr>
<td>1</td>
<td>1/4-18 NPT IEC 61518</td>
<td>PN 160: M10, PN 420: M12</td>
<td>Steel C 22.8</td>
<td>(316L)</td>
</tr>
<tr>
<td>2</td>
<td>1/4-18 NPT IEC 61518</td>
<td>PN 160: M10, PN 420: M12</td>
<td>AISI 316L</td>
<td>(316L)</td>
</tr>
<tr>
<td>3</td>
<td>1/4-18 NPT IEC 61518</td>
<td>PN 160: M10, PN 420: M12</td>
<td>Alloy C276</td>
<td>without valves/closing screws</td>
</tr>
</tbody>
</table>

**Oval flange, connection ¼-18 NPT or RC ¼, with lateral ventilation**

*Fig. 52: 10 mbar and 30 mbar measuring cell*

### Version Connection Fastening Material Equipment

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1/4-18 NPT IEC 61518</td>
<td>7/16-20 UNF</td>
<td>Steel C 22.8</td>
<td>incl. 4 closing screws</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(AISI 316L) and 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ventilation valves</td>
</tr>
<tr>
<td>E</td>
<td>1/4-18 NPT IEC 61518</td>
<td>7/16-20 UNF</td>
<td>AISI 316L</td>
<td>incl. 4 closing screws</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(AISI 316L) and 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ventilation valves</td>
</tr>
<tr>
<td>H</td>
<td>1/4-18 NPT IEC 61518</td>
<td>7/16-20 UNF</td>
<td>Alloy C276</td>
<td>without valves/closing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>screws</td>
</tr>
</tbody>
</table>
# Oval flange, prepared for isolating diaphragm connection

<table>
<thead>
<tr>
<th>Version</th>
<th>Connection</th>
<th>Fastening</th>
<th>Material</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>RC 1/4</td>
<td>7/16-20 UNF</td>
<td>AISI 316L</td>
<td>incl. 4 closing screws (AISI 316L) and 2 ventilation valves</td>
</tr>
</tbody>
</table>

Fig. 53: left: Process fitting DPT10 prepared for isolating diaphragm connection. right: Position of the copper ring seal

1 Isolating diaphragm connection
2 Copper ring seal
3 Cup diaphragm
INDEX

A
Adjustment
- Unit 41
- with differential pressure 43
- with flow 44-45
- with level 44
Application area
- Density measurement 10
- Differential pressure measurement 9
- Flow measurement 8
- Interface measurement 10
- Level measurement 9

C
Cable screening and grounding 29
Connection cable 29
Copy sensor data 47

D
Density measurement 22
Differential pressure measurement
- In gases and vapours 24
- In liquids 24

E
Electronics and connection compartment 33
Error messages 65

F
Fault rectification 64
Flow measurement
- In gases 15
- In liquids 16
- In vapours 15
Functional principle 10

I
Interface measurement 23

L
Leak volume suppression 46
Level measurement
- In the closed vessel 19-21
- In the open vessel 17-18
Linearisation curve
- with level 45

M
Maintenance 64
Mounting arrangement 26

O
Oxygen applications 14

P
Position correction 42
Process conditions 13

S
Setup
- Differential pressure measurement 61-62
- Flow measurement 55-56
- Level measurement 58-60

T
Totalizer 46
Tube mounting 26
Type label 7

V
Valve block 27
Voltage supply 11

W
Wiring plan 33
- External electronics 35
All statements concerning scope of delivery, application, practical use and operating conditions of the sensors and processing systems correspond to the information available at the time of printing.