Mounting and Operating Instructions

EB 8384-3 EN (1300-1612)

Firmware version 1.54
Edition February 2012
Definitions of the signal words used in these instructions

⚠️ **DANGER!**
indicates a hazardous situation which, if not avoided, will result in death or serious injury.

⚠️ **WARNING!**
indicates a hazardous situation which, if not avoided, could result in death or serious injury.

NOTICE
indicates a property damage message.

Note: Supplementary explanations, information and tips
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Important safety instructions</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Article code</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Design and principle of operation</td>
<td>10</td>
</tr>
<tr>
<td>3.1</td>
<td>Application type</td>
<td>11</td>
</tr>
<tr>
<td>3.2</td>
<td>Additional equipment</td>
<td>12</td>
</tr>
<tr>
<td>3.3</td>
<td>Communication</td>
<td>13</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Configuration using TROVIS-VIEW software</td>
<td>13</td>
</tr>
<tr>
<td>3.4</td>
<td>Technical data</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>Attachment to the control valve – Mounting parts and accessories</td>
<td>18</td>
</tr>
<tr>
<td>4.1</td>
<td>Direct attachment</td>
<td>20</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Type 3277-5 Actuator</td>
<td>20</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Type 3277 Actuator</td>
<td>22</td>
</tr>
<tr>
<td>4.2</td>
<td>Attachment according to IEC 60534-6 (NAMUR)</td>
<td>24</td>
</tr>
<tr>
<td>4.3</td>
<td>Attachment to Type 3510 Micro-flow Valve</td>
<td>26</td>
</tr>
<tr>
<td>4.4</td>
<td>Attachment to rotary actuators</td>
<td>28</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Heavy-duty version</td>
<td>30</td>
</tr>
<tr>
<td>4.5</td>
<td>Reversing amplifier for double-acting actuators</td>
<td>32</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Reversing amplifier (1079-1118 or 1079-1119)</td>
<td>32</td>
</tr>
<tr>
<td>4.6</td>
<td>Attaching an external position sensor</td>
<td>34</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Mounting the position sensor with direct attachment</td>
<td>34</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Mounting the position sensor with attachment according to IEC 60534-6</td>
<td>36</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Mounting the position sensor to Type 3510 Micro-flow Valve</td>
<td>37</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Mounting the position sensor to rotary actuators</td>
<td>38</td>
</tr>
<tr>
<td>4.7</td>
<td>Attaching positioners with stainless steel housings</td>
<td>39</td>
</tr>
<tr>
<td>4.8</td>
<td>Air purging function for single-acting actuators</td>
<td>39</td>
</tr>
<tr>
<td>4.9</td>
<td>Mounting parts and accessories</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>Connections</td>
<td>44</td>
</tr>
<tr>
<td>5.1</td>
<td>Pneumatic connections</td>
<td>44</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Signal pressure gauges</td>
<td>44</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Supply pressure</td>
<td>44</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Signal pressure (output)</td>
<td>45</td>
</tr>
<tr>
<td>5.2</td>
<td>Electrical connections</td>
<td>45</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Switching amplifiers</td>
<td>47</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Establishing communication</td>
<td>48</td>
</tr>
<tr>
<td>6</td>
<td>Operator controls and readings</td>
<td>50</td>
</tr>
<tr>
<td>6.1</td>
<td>Serial interface</td>
<td>52</td>
</tr>
<tr>
<td>6.2</td>
<td>HART® communication</td>
<td>52</td>
</tr>
</tbody>
</table>
Contents

7 Start-up – Settings .. 53
 7.1 Defining the valve closed position 53
 7.2 Setting the volume restriction Q 54
 7.3 Adapting the display 54
 7.4 Limiting the signal pressure 55
 7.5 Checking the operating range of the positioner ... 55
 7.6 Initialization .. 56
 7.6.1 MAX – Initialization based on maximum range 58
 7.6.2 NOM – Initialization based on nominal range 59
 7.6.3 MAN – Initialization based on a manually selected range 60
 7.6.4 SUB substitute calibration 61
 7.7 Zero calibration .. 64
 7.8 Performing settings for open/close valves 65
 7.9 Reset to default values 67

8 Operation .. 68
 8.1 Enabling and selecting parameters 68
 8.2 Operating modes 69
 8.2.1 Automatic and manual modes 69
 8.2.2 Fail-safe position (SAFE) 70
 8.3 Malfunction/maintenance alarm 70
 8.3.1 Confirming error messages 71

9 Adjusting the limit switch 72
 9.1 Retrofitting an inductive limit switch 74

10 Maintenance ... 75

11 Servicing explosion-protected devices 75

12 Firmware update (serial interface) 75

13 Maintenance, calibration and work on equipment 76

14 Code list .. 77

15 Settings in TROVIS-VIEW software 102
 15.1 General .. 102
 15.1.1 System requirements 102
 15.2 Installing TROVIS-VIEW software 103
 15.3 Starting TROVIS-VIEW and performing basic settings 104
 15.4 Data transmission 106
 15.4.1 Offline operation (indirect data transmission) 107
 15.4.2 Online operation (direct data transmission) 107
 15.4.3 Setting parameters 108
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.5</td>
<td>Initializing the positioner</td>
<td>109</td>
</tr>
<tr>
<td>15.6</td>
<td>Status classification</td>
<td>112</td>
</tr>
<tr>
<td>16</td>
<td>Dimensions in mm</td>
<td>114</td>
</tr>
<tr>
<td>16.1</td>
<td>Fixing levels according to VDI/VDE 3845 (September 2010)</td>
<td>116</td>
</tr>
<tr>
<td>17</td>
<td>Valve characteristic selection</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Test certificates</td>
<td>119</td>
</tr>
</tbody>
</table>

Note:
- The functions of **EXPERTplus** valve diagnostics are described in the Mounting and Operating Instructions *EB 8389 EN.*
Modifications of positioner firmware

Modifications of positioner firmware in comparison to previous versions

<table>
<thead>
<tr>
<th>Previous</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>The HART protocol as per HART® specification Revision 5 is supported by default setting. The setting can be changed to HART® Revision 6 over TROVIS-VIEW. HART® tools as well as AMS or handheld communicators are currently not supported by the Revision 6 version.</td>
</tr>
<tr>
<td></td>
<td>The following additional status messages were implemented: Code 76 - No emergency mode Code 77 - Program loading error Displays number of zero calibrations performed since the last initialization.</td>
</tr>
<tr>
<td></td>
<td>For initialization of "AIR TO CLOSE" actuators, the direction of action (Code 7) is automatically set to increasing/decreasing.</td>
</tr>
<tr>
<td></td>
<td>Code 3, the activation period of the enabled configuration function was extended to 120 s.</td>
</tr>
<tr>
<td>1.10</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>Electronics changed, no new functions added.</td>
</tr>
<tr>
<td>1.20</td>
<td>1.30</td>
</tr>
<tr>
<td></td>
<td>New EXPERTplus diagnostics functions (Code 48) added Positioner in EXPERTplus version with extended diagnostics features.</td>
</tr>
<tr>
<td></td>
<td>A running initialization can be canceled by pressing the rotary pushbutton.</td>
</tr>
<tr>
<td></td>
<td>The position transmitter (Code 37) and solenoid valve (Code 45) options are automatically recognized.</td>
</tr>
<tr>
<td>1.30</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td>All EXPERTplus functions can be used over HART® communication in this firmware version and higher.</td>
</tr>
<tr>
<td></td>
<td>The fault alarm contact is triggered by the condensed state of the positioner. It is always active when condensed state = “Maintenance alarm”. If Code 32 is set to Yes: Also active with “Function check” condensed state If Code 33 is set to Yes: Also active with “Maintenance required/Maintenance demanded” condensed state</td>
</tr>
<tr>
<td></td>
<td>The “Function check” condensed state is additionally set for Test A1, A2, fault alarm output and position transmitter.</td>
</tr>
<tr>
<td></td>
<td>The min./max. values of the temperature monitoring can be reset.</td>
</tr>
</tbody>
</table>
Modifications of positioner firmware

<table>
<thead>
<tr>
<th>Previous</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.40</td>
<td>1.41</td>
</tr>
<tr>
<td>Internal modifications</td>
<td></td>
</tr>
<tr>
<td>1.41</td>
<td>1.42</td>
</tr>
<tr>
<td>Internal modifications</td>
<td></td>
</tr>
<tr>
<td>1.42</td>
<td>1.51</td>
</tr>
<tr>
<td>Setting can be performed at the positioner to determine whether the valve is to operate as a control valve or an on/off valve (see section 3.1)</td>
<td></td>
</tr>
<tr>
<td>All EXPERTplus diagnostic functions are available in the positioner without having to activate them first (refer to EB 8389 EN on EXPERTplus valve diagnostics)</td>
<td></td>
</tr>
<tr>
<td>Optional binary input with following actions (refer to EB 8389 EN on EXPERTplus valve diagnostics):</td>
<td></td>
</tr>
<tr>
<td>- Set local operation write protection</td>
<td></td>
</tr>
<tr>
<td>- Start Partial Stroke Test (PST)</td>
<td></td>
</tr>
<tr>
<td>- Go to fail-safe reference variable</td>
<td></td>
</tr>
<tr>
<td>- Switch between AUTO/MAN</td>
<td></td>
</tr>
<tr>
<td>- Start data logger</td>
<td></td>
</tr>
<tr>
<td>- Reset diagnosis</td>
<td></td>
</tr>
<tr>
<td>- External solenoid valve connected</td>
<td></td>
</tr>
<tr>
<td>- Leakage sensor</td>
<td></td>
</tr>
<tr>
<td>The pressure limit (Code 16) is no longer automatically set during initialization.</td>
<td></td>
</tr>
<tr>
<td>1.51</td>
<td>1.54</td>
</tr>
<tr>
<td>Internal modifications</td>
<td></td>
</tr>
</tbody>
</table>
1 Important safety instructions

For your own safety, follow these instructions concerning the mounting, start-up and operation of the positioner:

- The positioner is to be mounted, started up or operated only by trained and experienced personnel familiar with the product.
 According to these Mounting and Operating Instructions, trained personnel refers to individuals who are able to judge the work they are assigned to and recognize possible dangers due to their specialized training, their knowledge and experience as well as their knowledge of the applicable standards.

- Explosion-protected versions of this positioner may only be operated by personnel who have undergone special training or instructions or who are authorized to work on explosion-protected devices in hazardous areas. Refer to section 11.

- Any hazards that could be caused by the process medium, the operating pressure, the signal pressure or by moving parts of the control valve are to be prevented by means of the appropriate measures.

- If inadmissible motions or forces are produced in the actuator as a result of the supply pressure, the supply pressure must be restricted by means of a suitable supply pressure reducing station.

To avoid damage to any equipment, the following also applies:

- Do not operate the positioner with the back of the positioner/vent opening facing upwards.
 The vent opening must not be sealed when the positioner is installed on site.

- Proper shipping and appropriate storage are assumed.

- Do not ground electric welding equipment near to the positioner.

Note: The device with a CE marking fulfills the requirements of the Directives 94/9/EC (ATEX) and 89/336/EEC (EMC).
The Declaration of Conformity is available on request.
Article code

Article code

<table>
<thead>
<tr>
<th>Article code</th>
<th>Type 3730-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>With LC display, autotune, HART® communication</td>
<td></td>
</tr>
</tbody>
</table>

Explosion protection

<table>
<thead>
<tr>
<th>Without</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATEX: II 2G Ex ia IIC T6, II 2D Ex tb IIIc T80°C IP 66</td>
<td>1</td>
</tr>
</tbody>
</table>

FM/CSA:

| Class I, Zone 0 AEx ia IIC; Class I, II, III, Div.1, Groups A–G; Class I, Div.2, Groups A–D; Class II, III, Div.2, Groups F, G/Ex ia IIC T6; Class I, Zone I, Groups A–D; Class II, Groups E–G; Class I, Zone 2; Class I, Div.2, Groups A–D; Class II, Div.2, Groups E–G | 3 |

ATEX: II 3G Ex nA II T6, II 3G Ex ic IIC T6, II 3D Ex tc IIIc T80°C IP 66 | 8 |

Options (additional equipment)

<table>
<thead>
<tr>
<th>Inductive limit switch</th>
<th>Without</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>With SJ 2-SN</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>With SJ 2-S1N</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Solenoid valve SIL 4</td>
<td>Without</td>
<td>0</td>
</tr>
<tr>
<td>24 V DC</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Analog position transmitter</td>
<td>Without</td>
<td>0</td>
</tr>
<tr>
<td>With</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External position sensor</td>
<td>Without</td>
<td>1</td>
</tr>
<tr>
<td>With</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Binary input</td>
<td>Without</td>
<td>0</td>
</tr>
<tr>
<td>With</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Diagnostics

| EXPERTplus | 4 |

Housing material

| Aluminum | 0 |
| Stainless steel 1.4581 | 0 |

Special applications

None	0
Free of paint-impairing substances	1
Exhaust air connection with ¼ NPT thread, back of positioner housing sealed	2

Special versions

None	0
IECEx: Ex ia IIC T6/T5/T4	1
GOST: 1Ex ia IIC T6 X; DIP A21 Ta80°C, IP 66	1
GOST: Ex nA II T6, Ex nL IIC T6, DIP A22 Ta80°C, IP 66	8
3 Design and principle of operation

The electropneumatic positioner is attached to pneumatic control valves. It is used to assign the valve stem position (controlled variable x) to the control signal (reference variable w). The input signal received from a control system is compared to the travel or rotational angle of the control valve, and a pneumatic signal pressure (output variable y) is produced.

The positioner basically consists of an electrical travel sensor system (2), an analog i/p converter (6) with downstream air capacity booster (7) and the electronic unit with a microcontroller (5).

The standard positioner is fitted with three binary contacts: A fault alarm output indicates a fault to a control station and two configurable software limit switches are used to indicate the end positions of the valve.

The position of the valve is transmitted as linear travel motion or angle of rotation via pick-up lever and travel sensor (2) to an analog PD controller (3). Simultaneously, an A/D converter (4) transmits the position of the valve to the microcontroller (5). The PD controller compares this actual position to the 4 to 20 mA DC control signal (reference 10 EB 8384-3 EN

Fig. 2 · Functional diagram
variable) after it has been converted by the A/D converter (4). In case of a system deviation, the actuator is either vented or filled with more air. The supply air is supplied to the air capacity booster (7) and the pressure regulator (8). An intermediate flow regulator (9) with fixed settings is used to purge the positioner and also guarantees trouble-free operation of the air capacity booster. The output signal pressure supplied by the booster can be limited over the software. The volume restriction Q (10) is used to optimize the positioner by adapting it to the actuator size.

The extended EXPERTplus diagnostics are integrated into the positioner. It provides information on the positioner and generates diagnostic and status alarms, which allow faults to be pinpointed quickly.

The positioner is suitable for the following types of attachment using the corresponding accessories:

- Direct attachment to SAMSON Type 3277 Actuator: Section 4.1
- Attachment to actuators acc. to IEC 60534-6 (NAMUR): Section 4.2
- Attachment to Type 3510 Micro-flow Valve: Section 4.3
- Attachment to rotary actuators acc. to VDI/VDE 3845: Section 4.4

3.1 Application type

Two application types for the valve are available: **Control valve** and **Open/Close (on/off) valve**. The manual mode (MAN) and the automatic mode (AUTO) can be selected with both application types.

Depending on the application type that has been selected, the positioner behaves differently in the automatic mode (AUTO):

<table>
<thead>
<tr>
<th></th>
<th>Control valve</th>
<th>Open/close valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO (○)</td>
<td>The positioner follows the reference variable continuously. The valve position (current position) appears in % on the display.</td>
<td>Discrete analysis of the reference variable. The valve position (current position) in % and O/C (Open/Close) appear in alternating sequence on the display.</td>
</tr>
<tr>
<td>MAN (▷)</td>
<td>The positioner follows the reference variable given over local operation.</td>
<td></td>
</tr>
</tbody>
</table>

The application type is set in Code 49 - h (see section 7.8).

Note:
- Depending on the application type, certain diagnostic functions cannot be performed or analyzed. Refer to EB 8389 EN on EXPERTplus valve diagnostics.
- In manual mode, an on/off valve can be moved past 100 % of the nominal range (with the closed position for ATO) or below 0 % of the nominal range (with the closed position for ATC). See section 7.1 for valve closed position.
3.2 Additional equipment

Solenoid valve
If the operating voltage for the solenoid valve (12) fails, the supply pressure for the i/p converter is vented to the atmosphere. The positioner can no longer operate and the control valve moves to the fail-safe position determined by the actuator, independent of the reference variable.

NOTICE
In manual mode (MAN), the manual set point is also reset to 0 %. A different manual set point must be entered again (Code 1).

Position transmitter
The position transmitter (13) is a two-wire transmitter and issues the travel sensor signal as a 4 to 20 mA signal processed by the microcontroller. Since this signal is issued independent of the positioner’s input signal (min. current 3.8 mA), the actual travel/angle of rotation is controlled in real-time. Additionally, the position transmitter provides the possibility of signaling a positioner fault over a signal current of < 2.4 mA or > 21.6 mA.

Inductive limit switch
The rotary shaft of the positioner carries an adjustable tag which actuates the installed proximity switch. The optional inductive limit switch (11) is connected to A1, while the remaining software limit switch is connected to A2.

External position sensor
In this version, only the sensor is mounted to the control valve. The positioner is located separately from the valve. The connection of x and y signals to the valve is established by cable and piping for air (only without inductive limit switch).

Binary input
The positioner has an optional binary input. The following actions can be performed over the binary input:
- Transfer switching state [default]
The switching state of the binary input is logged.
- Set local operation write protection
Settings cannot be changed at the positioner while the binary input is active. The configuration enabled function in Code 3 is not active.
- Start partial stroke test (PST)
The positioner starts a single partial stroke test. The test is performed according to the settings in Code 49 - d2 to Code 49 - d9 (refer to EB 8389 EN on EXPERTplus valve diagnostics).
- Go to fail-safe reference value
An open/close valve moves to the entered fail-safe reference value when the positioner is in automatic mode ◁ (AUTO).
No action is started when the positioner is in manual mode ◁ (MAN) or fail-safe position (SAFE).
- Switch between AUTO/MAN
The positioner changes from automatic mode ◁ (AUTO) mode into manual mode ◁ (MAN) and vice versa.
No action is started if the positioner is in the fail-safe position (SAFE).

- **Start data logger**
 The data logger is started when the binary input is active (refer to EB 8389 EN on EXPERTplus valve diagnostics).

- **Reset diagnosis**
 Any active diagnostic functions in Statistical information (in-service monitoring) and Tests (out-of-service diagnostics) are canceled and the diagnosis data are reset once.

- **External solenoid valve connected**
 The triggering of an external solenoid valve is recognized.

- **Leakage sensor**
 The “External leakage soon to be expected” error is set. The error is reset when the edge control is set to OFF. The alarm remains saved in the logging.

Note: The optional binary input can only be configured using the TROVIS-VIEW software and over the DD parameters (refer to EB 8389 EN on EXPERTplus valve diagnostics). The default switching state is with an open switch.

3.3 Communication

The positioner is equipped with an interface for HART® protocol (Highway Addressable Remote Transducer) for communication purposes. Data are transmitted in a superimposed frequency (FSK = Frequency Shift Keying) on the existing signal loop for the 4 to 20 mA reference variable. Either a HART® capable handheld communicator or a computer with FSK modem can be used to establish communication and operate the positioner.

3.3.1 Configuration using TROVIS-VIEW software

Refer to Table 5 on page 42 for order numbers.

The positioner can be configured using the TROVIS-VIEW software. The positioner is equipped for this purpose with an additional digital SERIAL INTERFACE to allow a computer to be connected over an adapter cable from the RS-232 or USB port of the computer to the positioner. The TROVIS-VIEW software enables the user to easily set parameters in the positioner and view process parameters online.
3.4 Technical data

<table>
<thead>
<tr>
<th>Type 3730-3 Positioner (technical data in test certificates also apply for explosion-protected devices)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel, adjustable</td>
</tr>
<tr>
<td>Direct attachment to Type 3277: 3.6 to 30 mm</td>
</tr>
<tr>
<td>Attachment acc. to IEC 60534-6: 3.6 to 200 mm</td>
</tr>
<tr>
<td>Rotary actuators: 24° to 100°</td>
</tr>
<tr>
<td>Travel range</td>
</tr>
<tr>
<td>Adjustable within the initialized travel/angle of rotation;</td>
</tr>
<tr>
<td>travel can be restricted to $\frac{1}{2}$ at the maximum</td>
</tr>
<tr>
<td>Reference variable w</td>
</tr>
<tr>
<td>Signal range 4 to 20 mA, 2-wire unit, reverse polarity protection,</td>
</tr>
<tr>
<td>min. span 4 mA, static destruction limit 100 mA</td>
</tr>
<tr>
<td>Minimum current</td>
</tr>
<tr>
<td>3.6 mA for display, 3.8 mA for operation</td>
</tr>
<tr>
<td>Load impedance</td>
</tr>
<tr>
<td>$\leq 8.2 \text{ V }$ (corresponding to $410 \Omega \text{ at } 20 \text{ mA}$)</td>
</tr>
<tr>
<td>Supply air</td>
</tr>
<tr>
<td>Supply pressure from 1.4 to 7 bar (20 to 105 psi),</td>
</tr>
<tr>
<td>Air quality acc. to ISO 8573-1 (2001): Max. particle size and density: Class 4</td>
</tr>
<tr>
<td>Oil content: Class 3, pressure dew point: Class 3 or at least 10 K beneath the lowest ambient temperature to be expected</td>
</tr>
<tr>
<td>Signal pressure (output)</td>
</tr>
<tr>
<td>0 bar up to the capacity of supply pressure, limitable to 1.4/2.4/3.7 ±0.2 bar via software</td>
</tr>
<tr>
<td>Characteristic, user-defined adjustable over operating software</td>
</tr>
<tr>
<td>Linear/equal percentage/reverse equal percentage/butterfly valve linear/butterfly valve eq. percentage/rotary plug valve linear/rotary plug valve eq. percentage/segmented ball valve linear/segmented ball valve equal percentage</td>
</tr>
<tr>
<td>Deviation from terminal-based conformity $\leq 1 %$</td>
</tr>
<tr>
<td>Hysteresis</td>
</tr>
<tr>
<td>$\leq 0.3 %$</td>
</tr>
<tr>
<td>Sensitivity</td>
</tr>
<tr>
<td>$\leq 0.1 %$</td>
</tr>
<tr>
<td>Transit time</td>
</tr>
<tr>
<td>Separately adjustable up to 240 seconds for supply air and exhaust air</td>
</tr>
<tr>
<td>Direction of action</td>
</tr>
<tr>
<td>Reversible</td>
</tr>
<tr>
<td>Air consumption, steady state</td>
</tr>
<tr>
<td>Independent from supply pressure approx. 110 l$_m$/h</td>
</tr>
<tr>
<td>Air output capacity</td>
</tr>
<tr>
<td>Actuator pressurized</td>
</tr>
<tr>
<td>$\Delta p = 6 \text{ bar}: 8.5 \text{ m}^3/\text{h}$, $\Delta p = 1.4 \text{ bar}: 3.0 \text{ m}^3/\text{h}$, $K_{V_{\text{max}}}$ (20 °C) = 0.09 $K_{V_{\text{max}}}$ (20 °C) = 0.15</td>
</tr>
<tr>
<td>Actuator vented</td>
</tr>
<tr>
<td>$\Delta p = 6 \text{ bar}: 14.0 \text{ m}^3/\text{h}$, $\Delta p = 1.4 \text{ bar}: 4.5 \text{ m}^3/\text{h}$</td>
</tr>
<tr>
<td>Permissible ambient temperature</td>
</tr>
<tr>
<td>-20 to $+80 \degree \text{C}$ in all versions</td>
</tr>
<tr>
<td>-45 to $+80 \degree \text{C}$ with metal cable gland</td>
</tr>
<tr>
<td>-25 to $+80 \degree \text{C}$ with inductive limit switches (SJ2-S1N) and metal cable gland</td>
</tr>
<tr>
<td>Limits in test certificate also apply for explosion-protected devices.</td>
</tr>
<tr>
<td>Influences</td>
</tr>
<tr>
<td>Temperature: $\leq 0.15 % / 10 \degree \text{K}$ Supply air: None</td>
</tr>
<tr>
<td>Vibration: $\leq 0.25 %$ up to 2000 Hz and 4 g acc. to IEC 770</td>
</tr>
<tr>
<td>Electromagnetic compatibility</td>
</tr>
<tr>
<td>Complying with EN 61000-6-2, EN 61000-6-3, EN 61326-1 and NAMUR Recommendation NE 21</td>
</tr>
<tr>
<td>Electrical connections</td>
</tr>
<tr>
<td>One M20 x 1.5 cable gland for 6 to 12 mm clamping range · Additional second M20 x 1.5 threaded hole · Screw terminals for 0.2 to 2.5 mm2 wire cross-section</td>
</tr>
<tr>
<td>Degree of protection</td>
</tr>
<tr>
<td>IP 66/NEMA 4X</td>
</tr>
</tbody>
</table>
Type 3730-3 Positioner (technical data in test certificates also apply for explosion-protected devices)

<table>
<thead>
<tr>
<th>Use in safety-instrumented systems in compliance with IEC 61508</th>
<th>Suitable for use in safety-relevant applications up to SIL 2 (single device) and SIL 3 (with redundant configuration), safety shutdown at a reference variable of 0 mA.</th>
</tr>
</thead>
</table>
| **Explosion protection** | Type 3730-31: II 2G Ex ia IIC T6, II 2D Ex tb IIC T80°C IP 66
Type 3730-38: II 3G Ex nA II T6, II 3G Ex ic IIC T6, II 3D Ex tc IIC T80°C IP 66
Type 3730-33: Class I, Zone 0 AEx ia IIC; Class I, II, III, Div.1, Groups A–G; Class I, Div. 2, Groups A–D; Class II, III, Div.2, Groups F, G
Type 3730-33: Ex ia IIC T6; Class I, Zone I, Groups A–D; Class II, Groups E–G; Class I, Zone 2; Class I, Div.2, Groups A–D; Class II, Div.2, Groups E–G
Type 3730-31xxxx0xx0x00x012: Ex ia IIC T6/T5/T4
Type 3730-31xxxx0xx0x00x014: 1Ex ia IIC T6 X; DIP A21 Ta80°C, IP 66
Type 3730-31xxxx0xx0x00x020: Ex nA II T6, Ex nL IIC T6, DIP A22 Ta80°C, IP 66 |
| **Communication (local)** | SAMSON SSP interface and serial interface adapter |
| **Software requirements** | TROVIS-VIEW with database module 3730-3 |
| **Communication (HART®)** | HART® field communication protocol
Impedance in the HART frequency range: receive 350 to 450 Ω, send: approx. 155 Ω |
| **Software requirements (HART®)** | For handheld communicator: device description for 3730-3,
For PC: DTM file acc. to Specification 1.2, suitable for integrating the positioner in frame applications that supports the FDT/DTM concept (e.g. PACTware); other integration options (e.g. AMS, PDM) available. |
| **Binary contacts** | 2 software limit switches, reverse polarity protection, floating, configurable switching characteristics, default settings as per table |
| **Signal status:**
No response:
Response: | **Without explosion protection:**
Non-conducting
Conductive (R = 348 Ω) | **Exp.-protected version:**
≤ 1.2 mA
≥ 2.1 mA |
| **1 fault alarm contact, floating** | **Without explosion protection:**
Conductive (R = 348 Ω)
Non-conducting | **Exp.-protected version:**
≥ 2.1 mA
≤ 1.2 mA |
| **For connection to**
- Binary input of the PLC acc. to IEC 61131-2,
 P\text{max} = 400 \text{mW}
- NAMUR switching amplifier acc. to EN 60947-5-6 | **NAMUR switching amplifier acc. to EN 60947-5-6** |

Materials

Housing	Die-cast aluminum EN AC-AlSi12(Fe) (EN AC-44300) acc. to DIN EN 1706, chromated and powder paint coated · Special version: Stainless steel 1.4581
External parts	Stainless steel 1.4571 and 1.4301
Cable gland	M20x1.5, black polyamide
Weight	Approx. 1.0 kg
Design and principle of operation

Options for Type 3730-3 Positioner

<table>
<thead>
<tr>
<th>Solenoid valve</th>
<th>Approval acc. to IEC 61508/SIL</th>
</tr>
</thead>
</table>
| **Input** | 24 V DC reverse polarity protection, static destruction limit 40 V;
 | Current consumption \(I = \frac{U - 5.7 \text{ V}}{3840 \text{ } \Omega} \) (corresponding to 4.8 mA at 24 V/114 mW) |
| Signal "0" no pick-up | \(\leq 15 \text{ V} \) |
| Signal "1" safe pick-up | \(> 19 \text{ V} \) |
| Service life | \(> 5 \times 10^6 \) switching cycles |
| \(K_v \) coefficient | 0.15 |
| Implementation in safety-relevant systems acc. to IEC 61508/SIL | Same as positioner pneumatics |

Analog position transmitter	Two-wire transmitter
Supply voltage	12 to 30 V DC, reverse polarity protection, static destruction limit 40 V
Output signal	4 to 20 mA
Direction of action	Reversible
Operating range	–10 to +114 %
Characteristic	Linear
Hysteresis and HF influence	Same as positioner
Other influences	Same as positioner
Fault indication	Can be issued with current signal 2.4 ±0.1 mA or 21.6 ±0.1 mA

Inductive limit switch	For connection to switching amplifier acc. to EN 60947-5-6. Can be used in combination with a software limit switch.
SJ2-SN proximity switch	NAMUR NC contact
SJ2-S1N proximity switch	NAMUR NO contact

External position sensor	Same as positioner
Travel	Same as positioner
Cable	10 m with M12x1 connector, designed for continuous flexing, flame retardant acc. to VDE 0472, resistant to oils, lubricants, coolants as well as other corrosive media
Permissible ambient temperature	–60 to +105 °C · Limits specified in the EC Type Examination Certificate additionally apply for explosion-protected devices.
Vibration immunity	Up to 10 g in the range between 10 and 2000 Hz
Degree of protection	IP 67
Binary input · Galvanically isolated · Switching behavior configured over software (e.g. TROVIS-VIEW, DTM)

<table>
<thead>
<tr>
<th>Active switching behavior (default setting)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection</td>
<td>For external switch (floating contact) or relay contacts</td>
</tr>
<tr>
<td>Electrical data</td>
<td>Open-circuit voltage when contact is open: max. 10 V, pulsed DC current, peak value 100 mA and RMS value of 0.01 mA when contact is closed</td>
</tr>
<tr>
<td>Contact</td>
<td></td>
</tr>
<tr>
<td>Closed, R < 20 Ω</td>
<td>“On” switching state (default setting)</td>
</tr>
<tr>
<td>Open, R > 400 Ω</td>
<td>“Off” switching state (default setting)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Passive switching behavior</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection</td>
<td>For externally applied DC voltage, reverse polarity protection</td>
</tr>
<tr>
<td>Electrical data</td>
<td>3 to 30 V, destruction limit 40 V, current draw 3.7 mA at 24 V</td>
</tr>
<tr>
<td>Voltage</td>
<td></td>
</tr>
<tr>
<td>> 6 V</td>
<td>“On” switching state (default setting)</td>
</tr>
<tr>
<td>< 1 V</td>
<td>“Off” switching state (default setting)</td>
</tr>
</tbody>
</table>
Attachment to the control valve – Mounting parts and accessories

4 Attachment to the control valve – Mounting parts and accessories

WARNING!
Attach the positioner, keeping the following sequence:
1. Mount the positioner on the control valve
2. Connect the supply air
3. Connect the electrical power
4. Perform the start-up settings

The positioner is suitable for the following types of attachment:
- Direct attachment to SAMSON Type 3277 Actuator
- Attachment to actuators according to IEC 60534-6 (NAMUR)
- Attachment to Type 3510 Micro-flow Valve
- Attachment to rotary actuators

NOTICE
Attach the positioner to the control valve, observing the following instructions to avoid damaging the positioner.
- Use only the mounting parts/accessories listed in the Tables 1 to 5 (pages 40 to 42) to mount the positioner. Observe the type of attachment!
- Observe the assignment between lever and pin position (see travel tables on page 19)!

Lever and pin position
The positioner is adapted to the actuator and to the rated travel by the lever on the back of the positioner and the pin inserted into the lever.

The travel tables on page 19 show the maximum adjustment range at the positioner. The travel that can be implemented at the valve is additionally restricted by the selected fail-safe position and the required compression of the actuator springs.

The positioner is standard equipped with the lever M (pin position 35).

Note: If the standard mounted lever M (pin position 35) is replaced, the newly mounted lever must be moved once all the way as far as it will go in both directions to adapt it to the internal measuring lever.
Travel tables

Note: The lever M is included in the scope of delivery. Levers S, L, XL for attachment according to IEC 60534-6 (NAMUR) are available as accessories (see Table 3 on page 41).

Direct attachment to Type 3277-5 and Type 3277 Actuators

<table>
<thead>
<tr>
<th>Actuator size [cm²]</th>
<th>Rated travel [mm]</th>
<th>Adjustment range at positioner</th>
<th>Required lever</th>
<th>Assigned pin position</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>7.5</td>
<td>5.0 to 25.0</td>
<td>M</td>
<td>25</td>
</tr>
<tr>
<td>120/240/350</td>
<td>15</td>
<td>7.0 to 35.0</td>
<td>M</td>
<td>35</td>
</tr>
<tr>
<td>355/700</td>
<td>30</td>
<td>10.0 to 50.0</td>
<td>M</td>
<td>50</td>
</tr>
</tbody>
</table>

Attachment according to IEC 60534-6 (NAMUR)

<table>
<thead>
<tr>
<th>SAMSON valves/Type 3271 Actuator</th>
<th>Actuator size [cm²]</th>
<th>Rated travel [mm]</th>
<th>Other valves/actuators</th>
<th>Required lever</th>
<th>Assigned pin position</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60 and 120 with Type 3510 Valve</td>
<td>7.5</td>
<td>3.6 to 18.0</td>
<td>S</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>7.5</td>
<td>5.0 to 25.0</td>
<td>M</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>120/240/350</td>
<td>15</td>
<td>7.0 to 35.0</td>
<td>M</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>7.5</td>
<td>7.0 to 35.0</td>
<td>M</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>1000/1400/2800</td>
<td>30</td>
<td>14.0 to 70.0</td>
<td>L</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>1000/1400/2800</td>
<td>60</td>
<td>20.0 to 100.0</td>
<td>L</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1400/2800</td>
<td>120</td>
<td>40.0 to 200.0</td>
<td>XL</td>
<td>200</td>
</tr>
</tbody>
</table>

Attachment to rotary actuators according to VDI/VDE 3845

<table>
<thead>
<tr>
<th>Rotary actuators</th>
<th>Min. Opening angle</th>
<th>Max.</th>
<th>Required lever</th>
<th>Assigned pin position</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>to 100°</td>
<td></td>
<td>M</td>
<td>90°</td>
</tr>
</tbody>
</table>
4.1 Direct attachment

4.1.1 Type 3277-5 Actuator

Refer to Table 1 on page 40 for the required mounting parts as well as the accessories. Note the travel table on page 19!

Actuator with 120 cm²

Depending on the type of positioner attachment, the signal pressure is routed either left or right of the yoke through a bore to the actuator diaphragm. Depending on the fail-safe action of the actuator "Actuator stem extends" or "Actuator stem retracts" (valve closes or opens if the supply air fails), the switchover plate (9) must first be attached to the actuator yoke. Align the switchover plate with the corresponding symbol for left or right attachment according to the marking (view looking onto the switchover plate).

1. Mount connecting plate (6) or pressure gauge bracket (7) with pressure gauges onto the positioner, making sure both seal rings (6.1) are seated properly.
2. Remove vent plug (4) on the back of the positioner and close the signal pressure output "Output 38" on the connecting plate (6) or on the pressure gauge bracket (7) with the stopper (5) included in the accessories.
3. Place follower clamp (3) on the actuator stem, align and screw tight so that the mounting screw is located in the groove of the actuator stem.
4. Mount cover plate (10) with narrow side of the cut-out opening (Fig. 4, left) pointing towards the signal pressure connection. Make sure that the bonded gasket (14) points towards the actuator yoke.
5. 15 mm travel: Keep the follower pin (2) at lever M (1) on the back of the positioner in the pin position 35 (delivered state).

7.5 mm travel: Remove the follower pin (2) from the pin position 35, reposition it in the bore for pin position 25 and screw tight.
6. Insert formed seal (15) in the groove of the positioner casing.
7. Place positioner on the cover plate (10) in such a manner that the follower pin (2) rests on the top of the follower clamp (3). Adjust the lever (1) correspondingly and open the positioner cover to hold the positioner shaft in position at the cap or the switch (Fig. 21). The lever (1) must rest on the follower clamp with spring force. Mount the positioner on the cover plate (10) using the two fixing screws. During the installation make sure that the seal ring (10.1) is inserted in the bore of the cover plate.
8. Mount cover (11) on the other side. Make sure that the vent plug points downwards when the control valve is installed to allow any condensed water that collects to drain off.
Fig. 4 · Direct attachment · Signal pressure connection for Type 3277-5 Actuator with 120 cm²

Symbols

- Actuator stem extends
- Actuator stem retracts
- Attachment left
- Attachment right

Switchover plate (9)

- Lever
- Nut
- Disk spring
- Follower pin
- Follower clamp
- Vent plug
- Stopper
- Connecting plate
- Connecting plate for actuator
- Seal rings
- Pressure gauge bracket
- Press. gauge mounting kit
- Switchover plate for actuator
- Swanover plate
- Nut
- Screw to actuator
- Nut
- Screw to body

Note:
Always use the connecting plate (6) included in the accessories to connect supply and output.
Never screw threaded parts directly into the housing.
4.1.2 Type 3277 Actuator

Refer to Table 2 on page 41 or the required mounting parts as well as the accessories. Note the travel table on page 19!

Actuators with 240 to 700 cm²

Mount the positioner on the yoke as shown in Fig. 5. The signal pressure is routed to the actuator over the connection block (12), for actuators with fail-safe action "Actuator stem extends" internally through a bore in the valve yoke and for "Actuator stem retracts" through external piping.

1. Place follower clamp (3) on the actuator stem, align and screw tight so that the mounting screw is located in the groove of the actuator stem.

2. Mount cover plate (10) with narrow side of the cut-out opening (Fig. 5, on the left) pointing towards the signal pressure connection. Make sure that the bonded gasket (14) points towards the actuator yoke.

3. For actuators with 355/700 cm², remove the follower pin (2) at lever M (1) on the back of the positioner from pin position 35, reposition it in the bore for pin position 50 and screw tight. For actuators 240 and 350 cm² with 15 mm travel, the follower pin (2) remains in pin position 35.

4. Insert formed seal (15) in the groove of the positioner casing.

5. Place positioner on the cover plate in such a manner that the follower pin (2) rests on the top of the follower clamp (3). Adjust the lever (1) correspondingly and open the positioner cover to hold the positioner shaft in position at the cap or the switch (Fig. 21). The lever (1) must rest on the follower clamp with spring force. Mount the positioner on the cover plate (10) using the two fixing screws.

6. Make sure that the tip of the gasket (16) projecting from the side of the connection block (12) is positioned above the actuator symbol that corresponds with the actuator with fail-safe action "Actuator stem extends" or "Actuator stem retracts." If necessary, remove the three fixing screws and the cover. Then reposition the gasket (16) turned by 180°. The previous version of the connection block (Fig. 5, bottom) requires the switch plate (13) to be turned such that the corresponding actuator symbol points to the marking.

7. Place the connection block (12) with the associated seal rings against the positioner and the actuator yoke. Screw it tight using the fixing screw (12.1). For actuators with fail-safe action "Actuator stem retracts", additionally remove the stopper (12.2) and fit on the external signal pressure piping.

8. Mount cover (11) on the other side. Make sure that the vent plug points downwards when the control valve is installed to allow any condensed water that collects to drain off.
Fig. 5 · Direct attachment – Signal pressure connection for Type 3277 Actuator with 240, 350, 355 and 700 cm²
4.2 Attachment according to IEC 60534-6 (NAMUR)

Refer to Table 3 on page 41 for the required mounting parts as well as the accessories. Note the travel table on page 19!

The positioner is attached to the control valve with a NAMUR bracket (10).

1. Screw the two bolts (14) to the bracket (9.1) of the stem connector (9), place the follower plate (3) on top and use the screws (14.1) to tighten.

Actuator size 2800 cm² and 1400 cm² (120 mm travel):
- For a travel of 60 mm or smaller, screw the longer follower plate (3.1) directly to the stem connector (9).
- For a travel exceeding 60 mm, mount the bracket (16) first and then the follower plate (3) to the bracket together with the bolts (14) and screws (14.1).

2. Mount NAMUR bracket (10) to the control valve as follows:
 - For attachment to the NAMUR rib, use an M8 screw (11), washer, and toothed lock washer directly in the yoke bore.
 - For attachment to valves with rod-type yokes, use two U-bolts (15) around the yoke.

Align the NAMUR bracket (10) in such a way that the slot of the follower plate (3) is centrally aligned with the NAMUR bracket at mid valve travel.

3. Mount connecting plate (6) or pressure gauge bracket (7) with pressure gauges (8) on the positioner, making sure both seal rings (6.1) are seated properly.

4. Select required lever size (1) M, L or XL and pin position according to the actuator size and valve travels listed in the table on page 19.

 Should you require a pin position other than position 35 with the standard installed lever M, or require a lever size L or XL, proceed as follows:

5. Screw the follower pin (2) in the assigned lever bore (pin position) as listed in the table. Only use the longer follower pin (2) included in the mounting kit.

6. Place lever (1) on the positioner shaft and screw tight using the disk spring (1.2) and nut (1.1).

 Note: If you have mounted a new lever (1), you must move it once all the way as far as it will go in both directions.

7. Place positioner on the NAMUR bracket in such a manner that the follower pin (2) rests in the slot of the follower plate (3, 3.1). Adjust the lever (1) correspondingly.

 Screw the positioner to the NAMUR bracket using both its fixing screws.
Fig. 6 · Attachment according to IEC 60534-6 (NAMUR)

Note: Always use the connecting plate (6) included in the accessories to connect supply and output. Never screw threaded parts directly into the housing.
4.3 Attachment to Type 3510
Micro-flow Valve

Refer to Table 3 on page 41 for the required mounting parts as well as the accessories. Note the travel table on page 19!

The positioner is attached to the valve yoke using a bracket.

1. Place clamp (3) on the valve stem connector, align at a right angle and screw tight.
2. Screw bracket (10) to the valve yoke using two screws (11).
3. Mount connecting plate (6) or pressure gauge bracket (7) with pressure gauges to the positioner, making sure both seal rings (6.1) are seated properly.
4. Unscrew the standard installed lever M (1) including follower pin (2) from the positioner shaft.
5. Take lever S (1) and screw follower pin (2) in the bore for pin position 17.
6. Place lever S on the positioner shaft and screw tight using the disk spring (1.2) and nut (1.1).
 Move lever once all the way as far as it will go in both directions.
7. Place positioner on the bracket (10) in such a manner that the follower pin slides into the groove of the clamp (3). Adjust the lever (1) correspondingly. Screw the positioner to the bracket (10) using both its screws.
1 Lever
1.1 Nut
1.2 Disk spring
2 Follower pin
3 Clamp
6 Connecting clamp
6.1 Seal rings
7 Pressure gauge bracket
8 Pressure gauge mounting kit
10 Bracket
11 Screw

Note: Always use the connecting plate (6) included in the accessories to connect supply and output. Never screw threaded parts directly into the housing.

Fig. 7 · Attachment to Type 3510 Micro-flow Valve
4.4 Attachment to rotary actuators

Refer to Table 4 on page 42 for the required mounting parts as well as the accessories. Note the travel table on page 19!

The positioner is mounted to the rotary actuator using two pairs of double brackets.

Prior to attaching the positioner to the SAMSON Type 3278 Rotary Actuator, mount the associated adapter (5) to the free end of the rotary actuator shaft.

Note: On attaching the positioner as described below, it is imperative that the actuator’s direction of rotation is observed.

1. Place follower clamp (3) on the slotted actuator shaft or the adapter (5).
2. Place coupling wheel (4) with flat side facing the actuator on the follower clamp (3). Refer to Fig. 9 to align the slot so that it matches the direction of rotation when the valve is in its closed position.
3. Screw coupling wheel and follower clamp tightly onto the actuator shaft using screw (4.1) and disk spring (4.2).
4. Screw the bottom pair of brackets (10.1) with the bends pointing either to the inside or to the outside (depending on the actuator size) to the actuator case. Position top pair of brackets (10) and screw tight.
5. Mount connecting plate (6) or pressure gauge bracket (7) with pressure gauges to the positioner, making sure both O-rings are seated properly.

For double-acting, springless rotary actuators, a reversing amplifier is required to attach the positioner to the actuator, see section 4.5.

6. Unscrew the standard follower pin (2) from the positioner’s lever M (1). Use the metal follower pin (Ø5) included in the mounting kit and screw tight into the bore for pin position 90°.
7. Place positioner on the top pair of brackets (10) and screw tight. Considering the actuator’s direction of rotation, adjust lever (1) so that it engages in the slot of the coupling wheel (4) with its follower pin (see Fig. 9). It must be guaranteed that the lever (1) is parallel to the long side of the positioner when the actuator is at half its angle of rotation.
8. Stick scale plate (4.3) on the coupling wheel so that the arrow tip indicates the closed position, and it can be easily read when the valve is installed.
Attachment to the control valve – Mounting parts and accessories

Note:
Always use the connecting plate (6) included in the accessories to connect supply and output. Never screw threaded parts directly into the housing.

Legends Figs. 8 + 9
1. Lever
1.1. Nut
1.2. Disk spring
2. Follower pin
3. Follower clamp (Fig. 8)
4. Coupling wheel
4.1. Screw
4.2. Disk spring
4.3. Scale plate
5. Actuator shaft
 Adapter for Type 3278
6.1. Seal rings
7. Pressure gauge bracket
8. Pressure gauge mounting kit
10. Top pair of brackets
10.1. Bottom pair of brackets

Fig. 9 - Attachment to rotary actuators
4.4.1 Heavy-duty version

Refer to Table 4 on page 42 for the required mounting parts as well as the accessories with their order numbers.

Both mounting kits contain all the necessary mounting parts. First select correct actuator size. Prepare actuator, and mount required adapter supplied by the actuator manufacturer, if necessary.

1. Mount the housing (10) onto the rotary actuator. In case of VDI/VDE attachment, place spacers (11) underneath, if necessary.

2. For SAMSON Type 3278 and VETEC S160 Rotary Actuator, screw the adapter (5) onto the free end of the shaft or place adapter (5.1) onto the shaft of the VETEC R Actuator. Place adapter (3) onto Type 3278, VETEC S160 and VETEC R Actuator. For VDI/VDE version, this step depends on the actuator size.

3. Stick adhesive label (4.3) onto the coupling wheel in such a manner that the yellow part of the sticker is visible in the window of the housing when the valve is OPEN. Adhesive labels with explanatory symbols are enclosed and can be stuck on the housing, if required.

4. Screw tight coupling wheel (4) onto the slotted actuator shaft or adapter (3) using screw (4.1) and disk spring (4.2).

5. Undo the standard follower pin (2) on the lever M (1) of the positioner. Attach the follower pin (Ø 5) included in the mounting kit to pin position 90°.

6. If applicable, mount pressure gauge bracket (7) with pressure gauges or, in case G ¼ threaded connections are required, the connecting plate (6), making sure both seal rings (6.1) are seated properly. For double-acting, springless rotary actuators, a reversing amplifier is required to attach the positioner to the actuator. Refer to section 4.5.

7. For actuators with a volume of less than 300 cm³, fit the screw-in restriction (order no.1400-6964) into the signal pressure output of the positioner (or the output of the pressure gauge bracket or connecting plate).

8. Place positioner on housing (10) and screw it tight. Considering the actuator’s direction of rotation, align lever (1) so that it engages in the correct slot of the coupling wheel with its follower pin (Fig. 10).

Fig. 10 · Direction of rotation

Counterclockwise

Clockwise
Attachment to the control valve – Mounting parts and accessories

1 Lever
1.1 Nut
1.2 Disk spring
2 Follower pin
3 Adapter
4 Coupling wheel
4.1 Screw
4.2 Disk spring
4.3 Adhesive label
5 Actuator shaft or adapter
5.1 Adapter

6 Connecting plate (only for G 1/4)
6.1 Seal rings
7 Pressure gauge bracket
8 Pressure gauge mounting kit
10 Adapter housing
10.1 Screws
11 Spacers

Fig. 11 · Attachment to rotary actuators (heavy-duty version)

SAMSON Type 3278
VETEC S160, VETEC R

Attachment acc. to VDE/VDI 3845 (Sept. 2010), level 1, size AA1 to AA4, refer to section 16.1

Fit screw-in restriction into signal pressure output for actuators with < 300 cm³ volume
4.5 Reversing amplifier for double-acting actuators

For the use with double-acting actuators, the positioner must be fitted with a reversing amplifier, e.g. the SAMSON Type 3710 Reversing Amplifier (see Mounting and Operating Instructions EB 8392 EN).

If a different reversing amplifier (item no. 1079-1118 or 1079-1119) is used, follow the mounting instructions described in section 4.5.1.

4.5.1 Reversing amplifier (1079-1118 or 1079-1119)

The output signal pressure of the positioner is supplied at the output A_1 of the reversing amplifier. An opposing pressure, which equals the required supply pressure when added to the pressure at A_1, is applied at output A_2.

The rule $A_1 + A_2 = Z$ applies.

Mounting

1. Mount the connecting plate (6) from the accessories in Table 5 to the positioner. Make sure that both O-rings (6.1) are seated correctly.
2. Thread the special nuts (1.3) from the accessories of the reversing amplifier into the boreholes of the connecting plate.
3. Insert the gasket (1.2) into the recess of the reversing amplifier and push both the hollowed special screws (1.1) into the connecting boreholes A_1 and Z.
4. Place the reversing amplifier onto the connecting plate (6) and screw tight using both the special screws (1.1).
5. Use a screwdriver (8 mm wide) to screw the enclosed filters (1.6) into the connecting boreholes A_1 and Z.

NOTICE

Do not unscrew the sealing plug (1.5) out of the reversing amplifier. The rubber seal (1.4) is not required and can be removed when the sealing plug is used.

Signal pressure connections

A_1: Output A_1 leading to the signal pressure connection at the actuator which opens the valve when the pressure increases

A_2: Output A_2 leading to the signal pressure connection at the actuator which closes the valve when the pressure increases

- Set slide switch on positioner to AIR TO OPEN.

6. After the initialization is completed, set Code 16 (Pressure limit) to No.

Pressure gauge attachment

The mounting sequence shown in Fig. 12 remains unchanged. Screw a pressure gauge bracket onto the connections A_1 and Z.

Pressure gauge G $\frac{3}{4}$ 1400-7106 bracket: $\frac{1}{4}$ NPT 1400-7107

Pressure gauges for supply air Z and output A_1 as listed in Tables 1 to 4.
Attachment to the control valve – Mounting parts and accessories

Fig. 12 · Mounting a reversing amplifier (1079-1118 or 1079-1119)
4.6 Attaching an external position sensor

Refer to Table 6 on p. 43 for the mounting parts as well as the accessories required.

In the positioner version with an external position sensor, the sensor placed in a separate housing is attached over a plate or bracket to the control valve. The travel pick-off corresponds to that of a standard device.

The positioner unit can be mounted as required to a wall or a pipe.

For the pneumatic connection either a connecting plate (6) or a pressure gauge bracket (7) must be fixed to the housing, depending on the accessory chosen. Make sure the seal rings (6.1) are correctly inserted (see Fig. 6, bottom right).

For the electrical connection a 10 meter connecting lead with M12x1 connectors is included in the scope of delivery.

Note:

- In addition, the instructions in sections 5.1 and 5.2 apply for the pneumatic and electrical connection.

4.6.1 Mounting the position sensor with direct attachment

Type 3277-5 Actuator with 120 cm²

The signal pressure from the positioner is routed over the signal pressure connection of the connecting plate (9, Fig. 14 left) to the actuator diaphragm chamber. To proceed, first screw the connecting plate (9) included in the accessories onto the actuator yoke.

- Turn the connecting plate (9) so that the correct symbol for the fail-safe position "Actuator stem extends" or "Actuator stem retracts" is aligned with the marking (Fig. 14, below).
- Make sure that the gasket for the connecting plate (9) is correctly inserted.
- The connecting plate has boreholes with NPT and G threads.
- Seal the threaded connection that is not used with the rubber seal and square plug.

Type 3277 Actuator with 240 to 700 cm²:

The signal pressure is routed to the connection at the side of the actuator yoke for the
version "Actuator stem extends". For the fail-safe position "Actuator stem retracts" the connection on the top diaphragm case is used. The connection at the side of the yoke must be fitted with a venting plug (accessories).

Mounting the position sensor

1. Place the lever (1) on the sensor in mid-position and hold it in place. Unthread the nut (1.1) and remove the lever together with the disk spring (1.2) from the sensor shaft.

2. Screw the position sensor (20) onto the mounting plate (21).

3. Depending on the actuator size and rated valve travel, determine the required lever and position of the follower pin (2) from the travel table on page 19. The positioner is delivered with lever M in pin position 35 on the sensor. If necessary, remove the follower pin (2) from its pin position and move it to the borehole for the recommended pin position and screw tight.

4. Place the lever (1) and disk spring (1.2) on the sensor shaft. Place the lever (1) in mid-position and hold it in place. Screw on the nut (1.1).

5. Place the follower clamp (3) on the actuator stem, align and fasten it, making sure that the fastening screw rests in the groove of the actuator stem.

6. Place the mounting plate (21) together with the sensor onto the actuator yoke so that the follower pin (2) rests on the top.

Fig. 14 · Mounting for Type 3277-5 Actuator (left) and Type 3277 Actuator (right)

Marking

- Symbol

Attachment to the control valve – Mounting parts and accessories

- Signal pressure

- Vent plug

- Actuator stem extends

- Actuator stem retracts

- Lever (1)
- Nut (1.1)
- Disk spring (1.2)
- Follower pin (2)
- Follower clamp (3)
- Connecting plate (9)
- Cover (11)
- Position sensor (20)
- Mounting plate (21)
of the follower clamp (3). It must rest on it with spring force. Screw tight the mounting plate (21) onto the actuator yoke using both fixing screws.

7. Mount cover (11) on the other side. Make sure that the vent plug points downwards when the control valve is installed to allow any condensed water that collects to drain off.

4.6.2 Mounting the position sensor with attachment according to IEC 60534-6

For the required mounting parts and the accessories, refer to Table 6 on page 43.

<table>
<thead>
<tr>
<th>1</th>
<th>Lever</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Nut</td>
</tr>
<tr>
<td>1.2</td>
<td>Disk spring</td>
</tr>
<tr>
<td>2</td>
<td>Follower pin</td>
</tr>
<tr>
<td>3</td>
<td>Follower plate</td>
</tr>
<tr>
<td>9</td>
<td>Stem connector</td>
</tr>
<tr>
<td>9.1</td>
<td>Bracket</td>
</tr>
<tr>
<td>14</td>
<td>Bolt</td>
</tr>
<tr>
<td>14.1</td>
<td>Screws</td>
</tr>
<tr>
<td>20</td>
<td>Position sensor</td>
</tr>
<tr>
<td>21</td>
<td>Bracket</td>
</tr>
</tbody>
</table>

1. Place the lever (1) on the sensor in mid-position and hold it in place. Unthread the nut (1.1) and remove the lever together with the disk spring (1.2) from the sensor shaft.

2. Screw the position sensor (20) onto the bracket (21). The standard attached lever M with the follower pin (2) at position 35 is designed for 120, 240 and 350 cm² actuators with 15 mm rated travel.

For other actuator sizes or travels, select the lever and pin position from the travel table on page 19. Lever L and XL are included in the mounting kit.

3. Place the lever (1) and disk spring (1.2) on the sensor shaft.

![Diagram](image-url)
Place the lever (1) in mid-position and hold it in place. Screw on the nut (1.1).

4. Screw both bolts (14) to the bracket (9.1) of the stem connector (9). Attach the follower plate (3) and fix with the screws (14.1).

5. Place the bracket with the sensor at the NAMUR rib in such a manner that the follower pin (2) rests in the slot of the follower plate (3), then screw the bracket using its fixing screws onto the valve.

4.6.3 Mounting the position sensor to Type 3510 Micro-flow Valve

For the required mounting parts and the accessories, refer to Table 6 on page 43.

1. Place the lever (1) in mid-position and hold it in place. Unscrew the nut (1.1) and remove the standard attached lever M (1) together with the disk spring (1.2) from the sensor shaft.

2. Screw the position sensor (20) onto the bracket (21).

3. Select the lever S (1) from the accessories and screw the follower pin (2) into the hole for pin position 17.

Place the lever (1) and disk spring (1.2) on the sensor shaft.

Place the lever (1) in mid-position and hold it in place. Screw on the nut (1.1).

4. Place the follower clamp (3) on the stem connector, align it at a right angle and screw tight.

5. Position the bracket (21) with the position sensor on the valve yoke and screw tight, making sure the follower pin (2) slides into the groove of the follower clamp (3).

Fig. 16 · Mounting on a micro-flow valve

1. Lever
2. Follower pin
3. Follower clamp
20. Position sensor
21. Bracket
1.1 Nut
1.2 Disk spring
4.6.4 Mounting the position sensor to rotary actuators

For the required mounting parts and the accessories, refer to Table 6 on page 43.

1. Place the lever (1) in mid-position and hold it in place. Unscrew the nut (1.1) and remove the standard attached lever M (1) together with the disk spring (1.2) from the sensor shaft.

2. Screw the position sensor (20) onto the mounting plate (21).

3. Replace the follower pin (2) normally attached to the lever (1) with the metal follower pin (Ø 5) from the accessories and screw it into the hole for pin position 90°.

4. Place the lever (1) and disk spring (1.2) on the sensor shaft. Place the lever (1) in mid-position and hold it in place. Screw on the nut (1.1).

Follow the instructions describing attachment to the standard positioner in section 4.4. Instead of the positioner, attach the position sensor (20) with its mounting plate (21).

Fig. 17 · Positioner unit with sensor mounted on rotary actuators
4.7 Attaching positioners with stainless steel housings

Positioners with stainless steel housings require mounting parts that are completely made of stainless steel or free of aluminum.

Note: The pneumatic connecting plate and pressure gauge bracket are available in stainless steel (order numbers listed below). The Type 3710 Pneumatic Reversing Amplifier is also available in stainless steel.

- Connecting plate (stainless steel): G ¼ NPT 1400-7476
- Connecting plate (stainless steel): ¼ NPT 1400-7477
- Pressure gauge bracket (st. steel): Only in ¼ NPT 1400-7108

The Tables 1 to 5 (pages 40 to 43) apply for attaching positioners with stainless steel housings with the following restrictions:

Direct attachment
All mounting kits from Tables 1 and 2 can be used. The connection block is not required. The stainless steel version of the pneumatic connecting plate routes the air internally to the actuator.

Attachment according to IEC 60534-6 (NAMUR rib or attachment to rod-type yokes)
All mounting kits from Table 3 can be used. Connecting plate in stainless steel.

Attachment to rotary actuators
All mounting kits from Table 4 can be used except for the heavy-duty version. Connecting plate in stainless steel.

4.8 Air purging function for single-acting actuators

The exhaust air from the positioner is diverted to the actuator spring chamber to provide corrosion protection inside the actuator. The following must be observed:

Direct attachment to Type 3277-5 (stem extends FA/stem retracts FE)
The air purging function is automatically provided.

Direct attachment to Type 3277, 240 to 700 cm²
FA: Remove the stopper 12.2 (Fig. 5 on page 23) at the connection block and make a pneumatic connection to the spring chamber on the vented side.

NOTICE
The method described does not apply to old connection blocks in powder-paint-coated aluminum.
In this case, follow the instructions for attachment described below in “Attachment acc. to IEC 60534-6 (NAMUR rib or attachment to rod-type yokes) and to rotary actuators”.

FE: The air purging function is automatically provided.

Attachment acc. to IEC 60534-6 (NAMUR rib or attachment to rod-type yokes) and to rotary actuators
The positioner requires an additional port for the exhaust air that can be connected...
over piping. An adapter available as an accessory is used for this purpose:

Threaded bushing G ¼ 0310-2619
(M20 x 1.5): ¼ NPT 0310-2550

NOTICE
The adapter uses one of the M20 x 1.5 connections in the housing which means **just one** cable gland can be installed.

Should other valve accessories be used which vent the actuator (e.g. solenoid valve, volume booster, quick exhaust valve), this exhaust air must also be included in the purging function. The connection over the adapter at the positioner must be protected with a check valve, e.g. check valve G ¼ (order no. 8502-0597) mounted in the piping. Otherwise the pressure in the positioner housing would rise above the ambient pressure and damage the positioner when the exhausting components respond suddenly.

4.9 Mounting parts and accessories

<table>
<thead>
<tr>
<th>Table 1 · Direct attachment to Type 3277-5 Actuator (Fig. 4)</th>
<th>Order no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting parts</td>
<td>Mounting parts for actuators up to 120 cm²</td>
</tr>
<tr>
<td>Accessories for the actuator</td>
<td></td>
</tr>
<tr>
<td>Switchover plate old for Actuator Type 3277-5xxxxx.00</td>
<td>1400-6819</td>
</tr>
<tr>
<td>Switchover plate new for Actuator Type 3277-5xxxxx.01</td>
<td>1400-6822</td>
</tr>
<tr>
<td>Connecting plate new for Actuator Type 3277-5xxxxx.01 (new) 1): G ¼ and ¼ NPT</td>
<td>1400-6823</td>
</tr>
<tr>
<td>Connecting plate old for Actuator Type 3277-5xxxxx.00 (old): G ¼</td>
<td>1400-6820</td>
</tr>
<tr>
<td>Connecting plate old for Actuator Type 3277-5xxxxx.00 (old): ¼ NPT</td>
<td>1400-6821</td>
</tr>
<tr>
<td>Accessories for the positioner</td>
<td></td>
</tr>
<tr>
<td>Connecting plate (6)</td>
<td>G ¼ 1400-7461</td>
</tr>
<tr>
<td></td>
<td>¼ NPT 1400-7462</td>
</tr>
<tr>
<td>Pressure gauge bracket (7)</td>
<td>G ¼ 1400-7458</td>
</tr>
<tr>
<td></td>
<td>¼ NPT 1400-7459</td>
</tr>
<tr>
<td>Pressure gauge mounting kit (8) up to max. 6 bar (output and supply)</td>
<td>Stainless steel/brass 1400-6950</td>
</tr>
<tr>
<td></td>
<td>Stainless steel/st. steel 1400-6951</td>
</tr>
</tbody>
</table>

1) Only new switchover and connecting plates can be used with new actuators (Index 01). Old and new plates are **not** interchangeable.
Table 2 · Direct attachment to Type 3277 (Fig. 5)

<table>
<thead>
<tr>
<th>Mounting parts</th>
<th>For actuators with 240, 350, 355 and 700 cm²</th>
<th>Order no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessories</td>
<td>Required piping with screw fitting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- for "Actuator stem retracts"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- with air purging of the top diaphragm chamber</td>
<td></td>
</tr>
<tr>
<td></td>
<td>240 cm²</td>
<td>Steel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1400-6444</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stainless steel</td>
</tr>
<tr>
<td></td>
<td>350 cm²</td>
<td>Steel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1400-6446</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stainless steel</td>
</tr>
<tr>
<td></td>
<td>355 cm² / 700 cm²</td>
<td>Steel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1400-6448</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stainless steel</td>
</tr>
<tr>
<td></td>
<td>Connection block with seals and screw</td>
<td>G ¼</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1400-8819</td>
</tr>
<tr>
<td></td>
<td></td>
<td>¼ NPT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1400-8820</td>
</tr>
<tr>
<td></td>
<td>Pressure gauge mounting kit (8) up to max. 6 bar (output/supply)</td>
<td>St. st./Brass</td>
</tr>
<tr>
<td></td>
<td></td>
<td>St. st./St. st.</td>
</tr>
</tbody>
</table>

Table 3 · Attachment to NAMUR ribs or control valves with rod-type yokes (20 to 35 mm rod diameter) according to IEC 60534-6 (Figs. 6 and 7)

<table>
<thead>
<tr>
<th>Travel in mm</th>
<th>Lever</th>
<th>For actuators</th>
<th>Order no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>S</td>
<td>Type 3271-5 Actuator with 60/120 cm² on Type 3510 Valve (Fig. 7)</td>
<td>1400-7457</td>
</tr>
<tr>
<td>5 to 50</td>
<td>M ¹)</td>
<td>Actuators from other manufacturers and Type 3271 with 120 to 700 cm²</td>
<td>1400-7454</td>
</tr>
<tr>
<td>14 to 100</td>
<td>L</td>
<td>Actuators from other manufacturers and Type 3271, versions 1000 and 1400-60</td>
<td>1400-7455</td>
</tr>
<tr>
<td>40 to 200</td>
<td>XL</td>
<td>Actuators from other manufacturers and Type 3271, versions 1400-120 and 2800 cm² with 120 mm travel</td>
<td>1400-7456</td>
</tr>
<tr>
<td>30 or 60</td>
<td>L</td>
<td>Type 3271, versions 1400-120 and 2800 cm² (30 or 60 mm travel)</td>
<td>1400-7466</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mounting bracket for Emerson and Masoneilan linear actuators; a mounting kit acc. to IEC 60534-6 is necessary depending on the travel (see above)</td>
<td>1400-6771</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valtek Type 25/50</td>
<td>1400-9554</td>
</tr>
</tbody>
</table>

Accessories

Connecting plate (6)	G ¼	1400-7461
	¼ NPT	1400-7462
Pressure gauge bracket (7)	G ¼	1400-7458
	¼ NPT	1400-7459
Pressure gauge mounting kit (8) up to max. 6 bar (output/supply)	St. st./Brass	1400-6950
	St. steel/St. st.	1400-6951

¹) Lever M is mounted on the standard positioner (included in the scope of delivery)
Table 4 · Attachment to rotary actuators (Figs. 8 and 9)

<table>
<thead>
<tr>
<th>Mounting parts</th>
<th>Attachments</th>
<th>Order no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attachment acc. to VDI/VDE 3845 (September 2010), refer to section 16.1 for details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actuator surface corresponds to level 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size AA1 to AA4, version with CrNiMo steel bracket</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size AA1 to AA4, heavy-duty version</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy-duty version (e.g. Air Torque 10 000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bracket surface corresponds to level 2, heavy-duty version</td>
<td></td>
<td>1400-9526</td>
</tr>
<tr>
<td>Attachment for SAMSON Type 3278 with 160/320 cm², CrNiMo steel bracket</td>
<td></td>
<td>1400-7614</td>
</tr>
<tr>
<td>Attachment for SAMSON Type 3278 with 160 cm² and for VETEC Type S160, Type R and Type R, heavy-duty version</td>
<td></td>
<td>1400-9245</td>
</tr>
<tr>
<td>Attachment for SAMSON Type 3278 with 320 cm² and for VETEC Type S320, heavy-duty version</td>
<td></td>
<td>1400-5891 and 1400-9526</td>
</tr>
<tr>
<td>Attachment to Camflex II</td>
<td></td>
<td>1400-9120</td>
</tr>
</tbody>
</table>

Table 5 · General accessories

<table>
<thead>
<tr>
<th>Accessories</th>
<th>Attachments</th>
<th>Order no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumatic reversing amplifier for double-acting actuators</td>
<td></td>
<td>3710</td>
</tr>
<tr>
<td>Cable gland M20 x 1.5, nickel-plated brass</td>
<td></td>
<td>1890-4875</td>
</tr>
<tr>
<td>Adapter M 20 x 1.5 to ½ NPT, aluminum</td>
<td></td>
<td>0310-2149</td>
</tr>
<tr>
<td>Retrofit kit for inductive limit switch 1x SJ 2-SN</td>
<td></td>
<td>1400-7460</td>
</tr>
<tr>
<td>Cover plate with list of parameters and operating instructions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>German/English (standard)</td>
<td></td>
<td>1990-0761</td>
</tr>
<tr>
<td>English/Spanish</td>
<td></td>
<td>1990-3100</td>
</tr>
<tr>
<td>English/French</td>
<td></td>
<td>1990-3142</td>
</tr>
<tr>
<td>TROVIS-VIEW with device module 3730-3 (order no. 6661-1056)</td>
<td></td>
<td>1043732</td>
</tr>
<tr>
<td>Serial interface adapter (SAMSON SSP interface - RS-232 port on computer)</td>
<td></td>
<td>1400-7700</td>
</tr>
<tr>
<td>Isolated USB interface adapter (SAMSON SSP interface - USB port on computer) including TROVIS-VIEW CD-ROM</td>
<td></td>
<td>1400-9740</td>
</tr>
</tbody>
</table>
Table 6 · Attachment of external position sensor

<table>
<thead>
<tr>
<th>Direct attachment</th>
<th>Order no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting parts for actuators with 120 cm² see Fig. 14 left</td>
<td>1400-7474</td>
</tr>
<tr>
<td>Connecting plate (old) for Actuator Type 3277-5xxxxxx.00</td>
<td>G ½</td>
</tr>
<tr>
<td>Connecting plate (new) for Actuator Type 3277-5xxxxxx.01 (new)</td>
<td>½ NPT</td>
</tr>
<tr>
<td>Mounting parts for actuators with 240, 350, 355 and 700 cm², see Fig. 14 right</td>
<td>1400-7423</td>
</tr>
<tr>
<td>NAMUR attachmt.</td>
<td>Mounting parts for attachment to NAMUR rib with lever L and XL, see Fig. 15</td>
</tr>
<tr>
<td>Micro-flow valve</td>
<td>Mounting parts for Type 3510 Micro-flow Valve, see Fig. 16</td>
</tr>
</tbody>
</table>

| Attachment to rotary actuators | | |
|-------------------------------|-----------------|
| VDI/VDE 3845 (September 2010), refer to section 16.1 for details | |
| Actuator surface area corresponds to level 1 | |
| Size AA1 to AA4 with follower clamp and coupling wheel, version with CrNiMo steel bracket, see Fig. 17 | 1400-7473 |
| Size AA1 to AA4, heavy-duty version | 1400-9384 |
| Size AA5, heavy-duty version (e.g. Air Torque 10 000) | 1400-9992 |
| Bracket surface area corresponds to level 2, heavy-duty version | 1400-9974 |

| SAMSON Type 3278 with 160 cm² (also for VETEC Type S160 and Type R), heavy-duty version | 1400-9385 |
| SAMSON Type 3278 with 320 cm² and for VETEC Type S320, heavy-duty version | 1400-5891 and 1400-9974 |

| Accessories for positioner | | |
|---------------------------|-----------------|
| Connecting plate (6) | G ⅛ | 1400-7461 |
| Pressure gauge bracket (7) | ⅛ NPT | 1400-7462 |
| Pressure gauge mounting kit up to max. 6 bar (output/supply) | G ⅛ | 1400-7458 |
| St. steel/brass | ⅛ NPT | 1400-7459 |
| Bracket to mount the positioner on a wall | St. steel/brass | 1400-7490 |
| Note: The other fastening parts are to be provided at the site of installation as wall foundations vary from site to site. | St. steel/st. steel | 1400-6951 |

1) Only new switchover and connecting plates can be used with new actuators (Index 01). Old and new plates are not interchangeable.
5 Connections

WARNING!
Mount the positioner, keeping the following sequence:
1. Remove protective film from pneumatic connections.
2. Mount the positioner on the control valve
3. Connect the supply air
4. Connect the electrical power
5. Perform the start-up settings

The connection of the electrical auxiliary power may cause the actuator stem to move, depending on the operating mode. Do not touch the actuator stem or obstruct it to avoid risk of injury to hands or fingers.

5.1 Pneumatic connections

NOTICE
Follow the instructions below to avoid damaging the positioner.
- The threaded connections in the positioner housing are not designed for direct air connection!
- The screw fittings must be screwed into the connecting plate, the pressure gauge mounting block or the connection block from the accessories.
The air connections are optionally designed as a bore with ¼ NPT or G ¼\ thread. The customary fittings for metal and copper pipes or plastic hoses can be used.
- The supply air must be dry and free from oil and dust. The maintenance instructions for upstream pressure reducing stations must be observed.

Blow through all air pipes and hoses thoroughly prior to connecting them.

If the positioner is attached directly to the Type 3277 Actuator, the connection of the positioner's output pressure to the actuator is fixed. For attachment according to IEC 60534-6 (NAMUR), the signal pressure can be routed to either the top or bottom diaphragm chamber of the actuator, depending on the actuator's fail-safe action "Actuator stem extends" or "Actuator stem retracts".
For rotary actuators, the manufacturer's specifications for connection apply.

5.1.1 Signal pressure gauges

To monitor the supply air (Supply) and signal pressure (Output), we recommend that pressure gauges be attached (see accessories in Tables 1 to 5).

5.1.2 Supply pressure

The required supply air pressure depends on the bench range and the actuator's operating direction (fail-safe action).
The bench range is registered on the nameplate either as spring range or signal pressure range depending on the actuator. The direction of action is marked **FA** or **FE**, or by a symbol.

- **Actuator stem extends FA** (Air to open)
 Fail-safe position "Valve Closed" (for globe and angle valves):
 Required supply pressure = Upper bench range value + 0.2 bar, minimum 1.4 bar.
Actuator stem retracts FE (Air to close)
Fail-safe position "Valve Open" (for globe and angle valves):
For tight-closing valves, the maximum signal pressure p_{stmax} is roughly estimated as follows:

$$
p_{\text{stmax}} = F + \frac{d^2 \cdot \pi \cdot \Delta p}{4 \cdot A} \text{ [bar]}
$$

d = Seat diameter [cm]
Δp = Differential pressure across the valve [bar]
A = Actuator diaphragm area [cm^2]

If there are no specifications, calculate as follows:
Required supply pressure = Upper bench range value + 1 bar.

5.1.3 Signal pressure (output)
The signal pressure at the output (Output 38) of the positioner can be limited to 1.4, 2.4 or 3.7 bar in Code 16.
The limitation is not activated [No] by default.

5.2 Electrical connections

DANGER!
Risk of electric shock and/or the formation of an explosive atmosphere!

- For electrical installation, observe the relevant electrotechnical regulations and the accident prevention regulations that apply in the country of use.
- The following regulations apply to mounting and installation in hazardous areas: EN 60079-14: 2008 Explosive atmospheres — Part 14: Electrical installations design, selection and erection (or VDE 0165 Part 1).

NOTICE
- Adhere to the terminal assignment! Switching the assignment of the electrical terminals may cause the explosion protection to become ineffective!
- Do not loosen enameled screws in or on the housing.
- The maximum permissible values specified in the national EC type examination certificates apply when interconnecting intrinsically safe electrical equipment (U_i, U_o, I_i, I_o, P_i, P_o, C_i, C_o, and L_i or L_o).

Selecting cables and wires:

Observe Clause 12 of EN 60079-14: 2008 when installing intrinsically safe circuits. The Subclause 12.2.2.2.7 applies when running multi-core cables containing more than one intrinsically safe circuit.
In particular, the radial thickness of the conductor insulation for common insulation materials, such as polyethylene, must have a minimum radial thickness of 0.2 mm.

The diameter of an individual wire in a fine-stranded conductor must not be smaller than 0.1 mm. Protect the conductor ends against splicing, e.g. by using wire-end ferrules.

When two separate cables are used for connection, an additional cable gland can be installed.

Seal cable entries left unused with plugs.

Devices used at ambient temperatures below –20 °C must be fitted with metal cable glands.

Equipment for use in zone 2/zone 22

In equipment operated with type of protection Ex nA II (non-sparking equipment) according to EN 60097-15: 2003, circuits may be connected, interrupted or switched while energized only during installation, maintenance or repair.

Equipment connected to energy-limited circuits with type of protection Ex nL (energy-limited equipment) according to EN 60097-15: 2003 may be switched under normal operating conditions.

The maximum permissible values specified in the Statement of Conformity or its addenda apply when interconnecting the equipment with energy-limited circuits in type of protection Ex nL IIC.

Cable entries

The cable entry with M20 x 1.5 cable gland, 6 to 12 mm clamping range.

There is a second M20 x 1.5 threaded bore in the housing that can be used for additional connection, when required.

The screw terminals are designed for wire cross-sections of 0.2 to 2.5 mm². Tighten by at least 0.5 Nm.

The wires for the reference variable must be connected to the terminals 11 and 12 located in the housing. Only use a current source!

If the reference variable exceeds 22 mA, OVERLOAD appears on the display to warn the user.

NOTICE

The wrong connection of a voltage source of just around 7 V (or around 2 V when connected to the wrong pole) by mistake can damage the positioner.

In general, it is not necessary to connect the positioner to a bonding conductor. Should this be required, however, this conductor can be connected inside the device.

Depending on the version, the positioner is equipped with inductive limit switches and/or a solenoid valve.

The position transmitter is operated on a two-wire circuit. The usual supply voltage is 24 V DC. Considering the resistance of the supply leads, the voltage at the position transmitter terminals can be between 12 V and 30 V DC.

Refer to Fig. 18 or the label on the terminal strip for terminal assignment.
NOTICE
The minimum reference variable should not fall below 3.8 mA for operating the positioner.

Accessories

Plastic cable gland M20 x 1.5:
- Black Order no. 8808-1011
- Blue Order no. 8808-1012
- Nickel-plated brass Order no. 1890-4875
- Stainless steel 1.4305 Order no. 8808-0160

Adapter M20 x 1.5 to ½ NPT
- Aluminum, powder-coated Order no. 0310-2149
- Stainless steel Order no. 1400-7114

5.2.1 Switching amplifiers

For operation of the limit switches, switching amplifiers must be connected in the output circuit. To ensure the operating reliability of the positioner, the amplifiers should comply with the limit values of the output circuits conforming to EN 60947-5-6.

If the positioner is to be installed in hazardous areas, the relevant regulations must be observed.

For applications in safe areas (non-hazardous areas), limit switches can be directly interconnected to the binary input of the PLC in accordance with IEC 61131. This applies to the standard operating range for digital inputs according to Clause 5.2.1.2 of IEC 61131-2 with the rated voltage of 24 V DC.
5.2.2 Establishing communication

Communication between PC and positioner (via FSK modem or handheld communicator, if necessary, using an isolation amplifier) is based on the HART protocol.

Type Viator FSK modem
RS 232 not ex. Order no. 8812-0130
PCMCIA not ex Order no. 8812-0131
USB not ex Order no. 8812-0132

If the supply voltage of the controller or control station becomes too low because it has been reduced by the load in the circuit, an isolation amplifier is to be connected between controller and positioner (interfacing as for positioner connected in hazardous areas, see Fig. 19).

If the positioner is used in hazardous areas, an explosion-protected isolation amplifier is to be used.

By means of the HART protocol, all control room and field devices connected in the loop are individually accessible through their address via point-to-point or standard bus (Multidrop).

Point-to-point:
The bus address/polling address must always be set to zero (0).

Standard bus (Multidrop):
In the standard bus (Multidrop) mode, the positioner follows the analog current signal

Fig. 19 · Connection with FSK modem
(reference variable) as for point-to-point communication. This operating mode is, for example, suitable for split-range operation of positioners (series connection). The bus address/polling address has to be within a range of 1 to 15.

Note:
Communication errors may occur when the process controller/control station output is not HART-compatible. For adaptation, the Z box (order no. 1170-2374) can be installed between output and communication interface. At the Z box a voltage of 330 mV is released (16.5 Ω at 20 mA). Alternatively, a 250-Ω resistor can be connected in series and a 22-μF capacitor can be connected in parallel to the analog output. Note that in this case, the controller output load will increase.

![Fig. 20: Adapting the output signal](image)
6 Operator controls and readings

Rotary pushbutton

The rotary pushbutton is located underneath the front protective cover. The positioner is operated on site using the rotary pushbutton:

- Turn \(\circ\) to select codes and values.
- Press \(\circ\) to confirm setting.

Slide switch AIR TO OPEN or AIR TO CLOSE

- AIR TO OPEN applies when the increasing signal pressure opens the valve
- AIR TO CLOSE applies when the increasing signal pressure closes the valve

The signal pressure is the air pressure at the output of the positioner which is transferred to the actuator.

For positioners with an attached reversing amplifier for double-acting rotary actuators (section 4.5): switch position AIR TO OPEN.

Volume restriction Q

The volume restriction is used to adapt the air delivery to the actuator size. Two fixed settings are possible depending on how the air is routed at the actuator:

- For actuators smaller than 240 cm² with a loading pressure connection at the side (Type 3271-5) - MIN SIDE.
- For a connection at the back (Type 3277-5) - MIN BACK.
- For actuators 240 cm² and larger, MAX SIDE for a side connection and to MAX BACK for a connection at the back.

Readings on display

Icons appear on the display that are assigned to parameters, codes and functions.

Operating modes:

- Manual mode (MAN), section 8.2.1
- Automatic mode (AUTO), section 8.2.1
- Fail-safe position (SAFE), section 8.2.2

Bar elements:

In manual and automatic modes, the bars indicate the system deviation that depends on the sign (+/−) and the value. One bar element appears per 1 % system deviation.

If the device has not yet been initialized, the \(\circ\) icon blinks on the display and the lever position in degrees in relation to the longitudinal axis is indicated. One bar element corresponds to approximately a 5° angle of rotation.

If the fifth bar element blinks (reading > 30°), the permissible angle of rotation has been exceeded. Lever and pin position must be checked.

Status alarms

- \(\mathbb{1}\), Maintenance alarm
- \(\mathbb{2}\), Maintenance required/Maintenance demanded

These icons indicate that an error has occurred.

A classified status can be assigned to each error. Classifications include “No message”, “Maintenance required”, “Maintenance demanded” and “Maintenance alarm” (see section 15.6).

Configuration enabled

This indicates that the codes marked with an asterisk (*) in the code list (section 14) are enabled for configuration (see section 8.1).
Displays and their meaning

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
<th>Code</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>Automatic mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>Clockwise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCL</td>
<td>Counterclockwise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Err</td>
<td>Error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESC</td>
<td>Escape</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HI</td>
<td>$ix \geq 21.6 \text{ mA}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LO</td>
<td>$ix \leq 2.4 \text{ mA}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOW</td>
<td>w too small</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAN</td>
<td>Manual range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX</td>
<td>Maximum range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Not available/Not active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOM</td>
<td>Nominal travel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVERLOAD</td>
<td>$w > 22 \text{ mA}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RES</td>
<td>Reset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUN</td>
<td>Start</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAFE</td>
<td>Fail-safe position</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUB</td>
<td>Substitute calibration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tune</td>
<td>Initialization in progress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YES</td>
<td>Available/Active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZP</td>
<td>Zero calibration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tESτing</td>
<td>Test function active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increasing/increasing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increasing/decreasing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Emergency mode (see error code 62)

Not initialized

Valve in mechanical fail-safe position

Maintenance alarm/fault

Manual mode

Closed-loop operation

Code

Bar graph for system deviation or lever position

Bar graph for system deviation or lever position

Limit switch

Alarm 1

Configuration enabled

Maintenance required/demanded

Blinking icon: Outside specification

Fail-safe position active

Initialization key

Cap or rotary switch

Metal tag of proximity switch

SSP interface

Switch for AIR TO OPEN AIR TO CLOSE

Volume restriction

Rotary pushbutton

Fig. 21 · Display and operator controls
6.1 Serial interface

The positioner must be supplied with at least 4 mA. The positioner can be connected directly to the PC via the local serial interface and the serial interface adapter. Use the TROVIS-VIEW software with 3730-3 device module installed. Refer to section 15 for more details.

6.2 HART® communication

The positioner must be supplied with at least 4 mA current. The FSK modem must be connected in parallel to the current loop. A DTM file (Device Type Manager) conforming to the Specification 1.2 is available for communication. This allows the device, for example, to be run with the PACTware operator interface. All the positioner's parameters are then accessible over the DTM and the operator interface.

For start-up and settings, proceed as described in section 7.1 to 7.4. Refer to the code list in section 14 for the parameters necessary for the operator interface.

NOTICE

The write access for HART® communication can be disabled over Code 47. You can only disable or enable this function locally at the positioner. The write access is enabled by default. The on-site operation including the INIT key can be locked over HART® communication. The word "HART" then blinks on the display when Code 3 is selected. This locking function can only be disabled over HART® communication. On-site operation is enabled by default.

Note:

In the case, complex functions are started in the positioner, which require a long calculation time or lead to a large quantity of data being stored in the volatile memory of the positioner, the alert “busy” is issued by the DTM file. This alert is not a fault alarm and can simply be confirmed.
7 Start-up – Settings

WARNING!
Attach the positioner, keeping the following sequence:
1. Remove protective film from pneumatic connections
2. Mount the positioner on the control valve
3. Connect the supply air
4. Connect the electrical power
5. Perform the start-up settings

Reading on display after connecting the electrical auxiliary power:

- **Test inG** runs across the display and then the fault alarm icon **ı** appears and **ı** blinks on the display when the positioner has *not yet been initialized*. The reading indicates the lever position in degrees in relation to the longitudinal axis.

- If Code **0** appears on the display when a positioner has been *initialized*. The positioner is in the last active operating mode.

WARNING!
The actuator stem moves while the start-up settings are being performed.
Do not touch the actuator stem or obstruct it to avoid risk of injury to hands or fingers.

NOTICE
Perform the start-up settings in the same sequence as listed (section 7.1 to section 7.6).

Note: The positioner performs a test in the start-up phase while following its automation task at the same time. During the start-up phase, operation on site is unrestricted, yet write access is limited.

7.1 Defining the valve closed position

To adapt the positioner to the operating direction of the actuator, set slide switch to **AIR TO OPEN** or **AIR TO CLOSE**.

- **AIR TO OPEN** = Signal pressure opens the valve, for fail-safe position: actuator stem extends/fail close
- **AIR TO CLOSE** = Signal pressure closes the valve, for fail-safe position: actuator stem retracts/fail open.

NOTICE
The **AIR TO OPEN** (**AtO**) setting always applies to double-acting actuators.

For checking purposes:
After successfully completing initialization, the positioner display should read 0 % when the valve is closed and 100 % when the valve is open. If this is not the case, change the slide switch position and re-initialize the positioner.
Note: The switch position is prompted prior to an initialization. After an initialization has been completed, changing the switch position does not have any effect on the operation of the positioner.

7.2 Setting the volume restriction Q

The volume restriction Q is used to adapt the air delivery to the size of the actuator:

- Actuators with a transit time < 1 s, e.g. linear actuators with an effective area smaller than 240 cm², require a restricted air flow rate (MIN).
- Actuators with a transit time ≥ 1 s do not require the air flow rate to be restricted (MAX).

The position of volume restriction Q also depends on how the signal pressure is routed at the actuator in SAMSON actuators:

- The “SIDE” position applies for actuators with a loading pressure connection at the side, e.g. Type 3271-5.
- The “BACK” position applies for actuators with a loading pressure connection at the back, e.g. in Type 3277-5.

The “SIDE” restriction position always applies for actuators from other manufacturers.

Overview · Position of volume restriction Q*

<table>
<thead>
<tr>
<th>Signal pressure</th>
<th>Transit time</th>
<th>< 1 s</th>
<th>≥ 1 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection at the side</td>
<td>MIN SIDE</td>
<td>MAX SIDE</td>
<td></td>
</tr>
<tr>
<td>Connection at the back</td>
<td>MIN BACK</td>
<td>MAX BACK</td>
<td></td>
</tr>
</tbody>
</table>

* Intermediate positions are not permitted.

NOTICE
The positioner needs to be initialized again after the position of the restriction has been changed.

7.3 Adapting the display

The data representation on the positioner display can be turned by 180° to adapt it to how the positioner is mounted.

If the displayed data appear upside down, proceed as follows:

Turn Code 2
Press Code 2 blinks.
7.4 Limiting the signal pressure

If the maximum actuator force may cause damage to the valve, the signal pressure must be limited.

Enable configuration at the positioner before activating the pressure limit function:

Note: If no settings are entered within 120 seconds, the enabled configuration function becomes invalid.

Limiting the signal pressure:

1. Turn clockwise: Code 3, display: No
2. Press clockwise: Code 3 blinks.
3. Turn clockwise: YES
4. Press clockwise: display

5. Turn clockwise: Code 16
7. Turn clockwise until the required pressure limit (1.4/2.4/3.7 bar) appears.
8. Press to confirm the pressure limit setting.

7.5 Checking the operating range of the positioner

To check the mechanical attachment and the proper functioning, the valve should be moved through the operating range of the positioner in the manual operating mode with the manual reference variable.

Selecting manual operating mode:

1. Turn clockwise: Code 0
2. Press clockwise: Code 0 blinks.
3. Turn clockwise: MAN
4. Press clockwise: The positioner changes to the manual operating mode.

Checking the operating range:

1. Turn clockwise: Code 1
2. Press clockwise: Code 1 and blink.
3. Turn clockwise until the pressure in the positioner builds up, and the control valve moves to its final positions so that the travel/angle of rotation can be checked.
The angle of rotation on the back of the positioner is indicated. A horizontal lever (mid position) is equal to 0°.

To ensure the positioner is working properly, the outer bar elements may not blink while the valve is moving through the operating range. Exit Code 1 by pressing the rotary pushbutton ().

The permissible range has been exceeded when the displayed angle is greater than 30°, and the outer right or left bar element blinks. The positioner changes to the fail-safe position (SAFE).

After canceling the fail-safe position (SAFE) (see section 8.2.2) it is absolutely necessary to check the lever and pin position as described in section 4.

WARNING!

To avoid personal injury or property damage caused by the supply air or electrical auxiliary power, disconnect the supply air and electrical auxiliary power before exchanging the lever or changing the pin position.

7.6 Initialization

WARNING!

During initialization, the control valve moves through its entire travel/angle of rotation range. Therefore, do not start the initialization procedure while a process is running, but only during start-up when all shut-off valves are closed.

Before starting initialization, check the maximum permissible signal pressure of the control valve. During initialization, the positioner issues an output signal pressure up to the maximum supply pressure supplied. If necessary, limit the signal pressure by connecting an upstream pressure reducing valve.

NOTICE

After the positioner has been mounted on to another actuator or its mounting location has been changed and prior to re-initializing the positioner, the positioner needs to be reset to its basic setting (default values). Refer to section 7.9.

During initialization the positioner adapts itself optimally to the friction conditions and the signal pressure demand of the control valve. The type and extent of self-adaptation depends on the set initialization mode:

- **MAX maximum range** (standard range)
 Initialization mode for simple start-up of valves with two clearly defined mechanical end positions, e.g. three-way valves (see section 7.6.1)
NOM nominal range
Initialization mode for all globe valves (see section 7.6.2)

MAN manually selected range
Initialization mode for globe valves with an unknown nominal range (see section 7.6.3)

SUB substitute calibration (emergency mode)
This mode allows a positioner to be replaced while the plant is running, with the least amount of disruption to the plant (see section 7.6.4)

Note: For normal operation, simply start initialization by pressing the INIT key after mounting the positioner on the valve, defining the valve closed position and setting the volume restriction. The positioner only needs to work with its default settings. If necessary, perform a reset (see section 7.9).

The time required for an initialization process depends on the transit time of the actuator and may take several minutes.

After a successful initialization, the positioner runs in closed-loop operation indicated by .

A malfunctioning leads to the process being canceled. The initialization error appears on the display according to how it has been classified by the condensed state. See section 8.3.

Note: Positioner with extended EXPERTplus diagnostics automatically start to plot the reference graphs (drive signal steady-state d1 and hysteresis d2) after initialization has been completed. tEST d1 or tEST d2 appear on the display in an alternating sequence.

An error during the plotting of the reference graphs is indicated by Code 48 - h1 and Code 81.

The positioner still works properly, even though the reference graph plotting has not been completed successfully.

Valve closed position AIR TO CLOSE

If the slide switch is set to AIR TO CLOSE, the positioner automatically switches to the direction of action increasing/decreasing (↑↓) on successful completion of initialization.

This results in the following assignment between reference variable and valve closed position:
Valve closed position	**Direction of action**	**Valve Closed at Open at**
AIR TO OPEN | ⇐⇑ | 0 % 100 %
AIR TO CLOSE | ⇑⇑ | 100 % 0 %

The tight-closing function is activated.

NOTICE
Set Code 15 (final position w>) to 99 % for three-way valves.

Canceling an initialization process

The initialization procedure can be canceled while running by pressing the rotary pushbutton (). STOP appears three seconds long and the positioner then changes to the fail-safe position (SAFE).

Exit the fail-safe position again over Code 0 (see section 8.2.2).

7.6.1 MAX – Initialization based on maximum range

The positioner determines travel/angle of rotation of the closing member from the CLOSED position to the opposite side and adopts this travel/angle of rotation as the operating range from 0 to 100 %.

Enable configuration:

Note: If no settings are entered within 120 seconds, the enabled configuration function becomes invalid.

Default No

Turn Ω Code 3, display: No
Press Ω Code 3 blinks
Turn Ω YES
Press Ω, display

Select the initialization mode:

Initialization mode
Default MAX

Turn Ω Code 6
Press Ω
Turn Ω MAX
Press Ω to confirm the MAX as the initialization mode.

Start initialization:

- Press INIT key to start initialization!

The nominal travel/angle of rotation is indicated in % after initialization. Code 5 (nominal range) remains locked. The parameters for travel/angle range start (Code 8) and travel/angle range end (Code 9) can also only be displayed and modified in %.

For a reading in mm/°, enter the pin position (Code 4).
Enter the pin position:

![Pin position]

Turn Code 4
Press Code 4 blinks
Turn Pin position on lever (see relevant section on attachment)
Press . The reading of the nominal range appears in mm/°.

7.6.2 NOM – Initialization based on nominal range

The calibrated sensor allows the effective valve travel to be set very accurately. During the initialization process, the positioner checks whether the control valve can move through the indicated nominal range (travel or angle) without collision. If this is the case, the indicated nominal range is adopted with the limits of travel/angle range start (Code 8) and travel/angle range end (Code 9) as the operating range.

Note: The maximum possible travel must always be greater than the nominal travel entered. If this is not the case, initialization is interrupted (error alarm Code 52) because the nominal travel is not achieved.

Enable configuration:

Note: If no settings are entered within 120 seconds, the enabled configuration function becomes invalid.

![Enable configuration]

Enter the pin position and nominal range:

![Nominal range]

Turn Code 4
Press Code 4 blinks
Turn Pin position on lever (see relevant section on attachment)
Press .

Turn Code 5
Press Code 5 blinks
Turn ⏰ Nominal travel/angle
Press ⏰.

Select the initialization mode:

![Initialization mode](image)

Default MAX

Turn ⏰ Code 6
Press ⏰, Code 6 blinks
Turn ⏰ NOM
Press ⏰ to confirm the NOM as the initialization mode.

Start initialization:

- Press INIT key to start initialization!

Note: After initialization, check the direction of action and, if necessary, change it (Code 7).

7.6.3 MAN – Initialization based on a manually selected range

Before starting initialization, move the control valve manually to the OPEN position by turning ⏰ in small steps. The valve must move to the required valve position with a monotonically increasing signal pressure. The positioner calculates the differential travel/angle using the OPEN and CLOSED positions and adopts it as the operating range with limits of travel/angle range start (Code 8) and travel/angle range end (Code 9).

Enable configuration:

Note: If no settings are entered within 120 seconds, the enabled configuration function becomes invalid.

![Enable configuration](image)

Default No

Turn ⏰ Code 3, display: No
Press ⏰, Code 3 blinks
Turn ⏰ YES
Press ⏰, display

Enter the pin position:

![Enter the pin position](image)

Pin position Default No

Turn ⏰ Code 4
Press ⏰, Code 4 blinks
Turn ⏰ Pin position on lever (see relevant section on attachment)
Press ⏰. The reading of the nominal range appears in mm°.
Select the initialization mode:

Initialization mode
Default MAX

Turn Code 6
Press , Code 6 blinks
Turn MAN
Press to confirm the MAN as the initialization mode.

Enter OPEN position:

Manual reference variable (the current angle of rotation is displayed)

Turn Code 0
Press , Code 0 blinks
Turn MAN
Press .

Turn Code 1
Press , Code 1 blinks
Turn until the valve reaches its OPEN position.
Press to confirm the OPEN position.

Start initialization:

- Press INIT key to start initialization!

7.6.4 SUB substitute calibration

A complete initialization procedure takes several minutes and requires the valve to move through its entire travel range several times. This initialization mode, however, is an emergency mode, in which the control parameters are estimated and not determined by an initialization procedure. As a result, a high level of accuracy cannot be expected. You should always select a different initialization mode if the plant allows it.

The SUB initialization mode is used to replace a positioner while the process is running. For this purpose, the control valve is usually fixed mechanically in a certain position, or pneumatically by means of a pressure signal which is routed to the actuator externally. The blocking position ensures that the plant continues to operate with this valve position.

By entering the blocking position (Code 35), closing direction (Code 34), pin position (Code 4), nominal range (Code 5) and direction of action (Code 7), the positioner can calculate the positioner configuration.

NOTICE
Perform a reset before re-initializing the positioner if the substitute positioner has already been initialized. Refer to section 7.9.

Enable configuration:

Note: If no settings are entered within 120 seconds, the enabled configuration function becomes invalid.
Select the initialization mode:

Turn ⬙ Code 6
Press ⬙, Code 6 blinks
Turn ⬙ SUB
Press ⬙ to confirm the SUB as the initialization mode.

Enter the direction of action:

Turn ⬙ Code 7
Press ⬙, Code 7 blinks
Turn ⬙ Direction of action (⬆️ or ⬇️)
Press ⬙.

Deactivate travel limit:

Turn ⬙ Code 11
Press ⬙, Code 11 blinks
Turn ⬙ No
Press ⬙.
Change pressure limit and control parameters:

Note: Do not change the pressure limit (Code 16). Only change the control parameters K_P (Code 17) and T_V (Code 18) if the settings of the replaced positioner are known.

<table>
<thead>
<tr>
<th>Code</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>No</td>
</tr>
<tr>
<td>17</td>
<td>7</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
</tr>
</tbody>
</table>

Turn Code 16/17/18
Press Code 16/17/18 blinks
Turn to set the control parameter selected.
Press to confirm the setting.

Enter closing direction and blocking position:

![Closing direction](image)
- Closing direction
- Direction of rotation causing the valve to move to the CLOSED position (view onto positioner display)
- Default: CCL (counterclockwise)

![Blocking position](image)
- Blocking position
- Default: 0

Turn Code 34
Press, Code 34 blinks
Turn Closing direction (CCL counterclockwise/CL clockwise)
Press.

Turn Code 35
Press, Code 35 blinks
Turn Blocking position, e.g. 5 mm (read off at travel indicator scale of the blocked valve or measure with a ruler).
Press to confirm the setting.

Define the valve closed position:

- Set switch for valve closed position AIR TO OPEN or AIR TO CLOSE as described in section 7.1 on page 55.
- Set volume restriction as described in section 7.2 on page 54.
Start initialization:

- Press INIT key!
 The operating mode is changed to MAN.
 The blocking position is indicated.

Note: As initialization has not been carried out completely, the error code 76 (no emergency mode) and possibly also error code 57 (control loop) may appear on the display. These alarms do not influence the positioner’s readiness for operation.

Cancel the blocking position and change to automatic operating mode

For the positioner to follow its reference variable again, the blocking position must be canceled and the positioner must be set to \(\text{\&}\) automatic operating mode as follows:

Turn \(\text{\&}\), Code 1
Press \(\text{\&}\), Code 1 and \(\text{\&}\) blink
Turn \(\text{\&}\) in order to move the valve slightly past the blocking position.
Press \(\text{\&}\) to cancel mechanical blocking.

Turn \(\text{\&}\), Code 0
Press \(\text{\&}\), Code 0 blinks.

Turn \(\text{\&}\), \(\text{AU}t\text{O}\)
Press \(\text{\&}\). The positioner switches to automatic operating mode. The current valve position is indicated in %.

Note: If the positioner shows a tendency to oscillate in automatic operating mode, the parameters \(K_p\) and \(T_v\) must be slightly corrected. Proceed as follows:
Set \(T_v\) to \(4\) (Code 18).
If the positioner still oscillates, the gain \(K_p\) (Code 17) must be decreased until the positioner shows a stable behavior.

Zero point calibration

Finally, if process operations allow it, the zero point must be adjusted according to section 7.7.

7.7 Zero calibration

In case of discrepancies with the closing position of the valve, e.g. with soft-sealed plugs, it may become necessary to recalibrate the zero point.

We recommend re-initializing the positioner in case of deviations in the zero point over 5%.

NOTICE
The valve briefly moves from the current travel/angle of rotation position to the closed position.

Note: The positioner must be connected to the supply air to perform the zero calibration.

Enable configuration:

Turn \(\text{\&}\), Code 3, display: No
Press \(\text{\&}\), Code 3 blinks
Turn \(\text{\&}\), \(\text{YES}\)
Press \(\text{\&}\), display
Perform zero calibration:

![Image of a control panel with options]

Initialization mode
Default MAX

Turn Code 6
Press , Code 6 blinks
Turn ZP
Press .

Press INIT key!

Zero calibration is started, the positioner moves the control valve to the CLOSED position and readjusts the internal electrical zero point.

7.8 Performing settings for open/close valves

If the valve is to be operated using the open/close (on/off) application type, the operating point, test limits and limits for the discrete analysis must be defined.

Note: The travel range of open/close valves is defined using the fail-safe position and the given Operating point. As a result, the following parameters to define the operating range and the range of the reference variable cannot be changed or analyzed:

- Travel/angle range start (Code 8)
- Travel/angle range end (Code 9)
- Travel/angle lower limit (Code 10)
- Travel/angle upper limit (Code 11)

Reference variable range start (Code 12)
Reference variable range end (Code 13)

Discrete analysis

If the reference variable () is below Limit operating point (Code 49 - h5) at the start of automatic operation, the valve () moves to the fail-safe position. If the reference variable increases and exceeds the Limit operating point, the valve moves to the Operating point (Code 49 - h1). The valve moves back to the fail-safe position if the reference variable then falls below the Limit fail-safe position (Code 49 - h2).
If the reference variable (———) is above Limit operating point (Code 49 - h5) at the start of automatic operation, the valve (———) moves to the Operating point (Code 49 - h1). If the reference variable then drops below the Limit fail-safe position (Code 49 - h2), the valve moves to the fail-safe position.

Starting the partial stroke test (PST)

A partial stroke test is started when the reference variable (———) moves from a defined position (fail-safe position or Operating point) into the range between Lower limit test start (Code 49 - h3) and Upper limit test start (Code 49 - h4) and remains there for longer than six seconds. The valve (———) moves from the last defined position to Step start (Code 49 - d2).

After the partial stroke test is completed, the valve moves back to its last position (fail-safe position or Operating point).

Note: The partial stroke test (PST) is performed according to the settings in Code 49 - d2 to 49 - d9. Refer to EB 8389 EN on EXPERTplus valve diagnostics.

Cancelation of the partial stroke test (PST)

The partial stroke test is canceled whenever the reference variable leaves the range between Limit fail-safe position and Limit operating point.

After the test has been canceled, the valve moves back to its last position (fail-safe position or Operating point).

Performing settings

Configuration at the positioner must be enabled before the application type (open/close valve) can be set:

Turn Code 3, display: No
Press , Code 3 blinks.

Turn YES
Press , display:

Select open/close valve:

Turn Code 49

Turn Code h0
Press \(\text{Code } \text{h0} \) blinks.
Turn \(\text{YES} \)
Press \(. \)

After setting the application type as open/close valve, enter the operating point, test limits and limits for discrete analysis:
Turn \(\text{Code } \text{h1/h2/h3/h4/h5} \)
Press \(\text{Code } \text{h1/h2/h3/h4/h5} \) blinks.
Turn \(\text{YES} \) and set the selected parameter.
Press \(. \) to confirm the setting.

7.9 Reset to default values

This function resets all parameters to the factory default values (see code list in section 14).

Enable configuration:

Turn \(\text{Code } 3 \), display: \(\text{No} \)
Press \(\text{Code } 3 \) blinks
Turn \(\text{YES} \)
Press \(. \), display

Reset start-up parameters:

![Image of reset function]

Turn \(\text{Code } 36 \), display: \(\bullet\bullet\bullet\bullet \)
Press \(\text{Code } 36 \) blinks
Turn \(\text{Std} \)
Press \(. \). All start-up parameters are reset to their default values.

Note: Code 36 - diAG allows just the diagnosis data (EXPERTplus) to be reset. Refer to EB 8389 EN on EXPERTplus valve diagnostics.
8 Operation

WARNING!
The actuator stem moves while the positioner is being operated.
Do not touch the actuator stem or obstruct it to avoid risk of injury to hands or fingers.

8.1 Enabling and selecting parameters

The codes which are marked with an asterisk (*) in section 14 on page 77 onwards must be enabled with Code 3 before the associated parameters can be configured as described below.

You can now configure codes one after the other:
Turn \(\oplus \) and select the required code.
Press \(\ominus \) to access the selected code. The code number starts to blink.
Turn \(\ominus \) and select the setting.
Press \(\oplus \) to confirm the selected setting.

Note: If no settings are entered within 120 seconds, the enabled configuration function becomes invalid and the display changes to Code 0.

Cancel the setting:

To cancel a value before it is confirmed (by pressing \(\ominus \)) proceed as follows:
Turn \(\ominus \) ESC
Press \(\ominus \). The entered value is not adopted.

Turn \(\ominus \) Code 3, display: **No**
Press \(\ominus \), Code 3 blinks.
Change the setting of Code 3.
Turn \(\ominus \) **YES**
Press \(\ominus \), display:
The configuration is enabled.
8.2 Operating modes

8.2.1 Automatic and manual modes

After initialization has been completed successfully, the positioner is in automatic mode.

Switch to manual operating mode

Turn Code 0
Press , display: AUTO, Code 0 blinks.
Turn MAN
Press to switchover to manual mode. The switchover is smooth since the manual mode starts up with the set point last used during automatic mode. The current position is displayed in %.

Adjust the manual reference variable

Note: The positioner automatically returns to manual mode with Code 0 if no settings are made within 120 seconds.

Switch to automatic operating mode

Turn Code 0
Press , Code 0 blinks.
Turn AUTO
Press . The positioner changes to automatic operating mode.
8.2.2 Fail-safe position (SAFE)

If you want to move the valve to fail-safe position determined during start-up (see section 7.1), proceed as follows:

**Turn **

Code 0

Press , display: current operating mode (AUTO or MAN), Code 0 blinks.

**Turn **SAFE

Press , display: S.

The valve moves to the fail-safe position.

Once the positioner is initialized, the current valve position is indicated on the display in %.

Exit the fail-safe position

**Turn **

Code 0

Press , Code 0 blinks.

Turn and select the required operating mode AUTO or MAN.

Press . The positioner switches to the operating mode selected.

8.3 Malfunction/maintenance alarm

All status and fault alarms are classified according to a status in the positioner. The default settings of the status classification are listed in the code list.

Note: The status classification can be changed in TROVIS-VIEW and over the parameters in the DD file. Refer to EB 8389 EN on EXPERTplus valve diagnostics.

To provide a better overview, the classified alarms are summarized in a condensed state. The following status alarms are available:

- **Maintenance alarm**
 The positioner cannot perform its control task due to a functional fault in the device or in one of its peripherals or an initialization has not yet been successfully completed.

- **Maintenance required**
 The positioner still performs its control task (with restrictions). A maintenance requirement or above average wear has been determined. The wear tolerance will soon be exhausted or is reducing at a faster rate than expected. Maintenance is necessary in the medium term.

- **Maintenance demanded**
 The positioner still performs its control task (with restrictions). A maintenance demand or above average wear has been determined. The wear tolerance will soon be exhausted or is reducing at a faster rate than expected. Maintenance is necessary in the short term.
Out of specification

The positioner is operated outside specified operating conditions.

Note: If an event is assigned to the “No message” status, this event does not have any effect on the condensed state.

The condensed state appears on the display with the following icons:

<table>
<thead>
<tr>
<th>Condensed state</th>
<th>Positioner display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance alarm</td>
<td>![Maintenance alarm icon]</td>
</tr>
<tr>
<td>Function check</td>
<td>Text, e.g. test, tune, test</td>
</tr>
<tr>
<td>Maintenance required/</td>
<td>![Maintenance required icon]</td>
</tr>
<tr>
<td>Maintenance demanded</td>
<td>![Maintenance demanded icon]</td>
</tr>
<tr>
<td>Out of specification</td>
<td>![Out of specification icon] (blinking)</td>
</tr>
</tbody>
</table>

If the positioner has not been initialized, the maintenance alarm icon (![Maintenance alarm icon]) appears on the display as the positioner cannot follow its reference variable.

If fault alarms exist, the possible source of error is displayed in Code 49 onwards. In this case, Err appears on the display.

The cause and recommended action are listed in the code list (section 14).

Fault alarm output

The “Maintenance alarm” as the condensed state causes the optional fault alarm output to be switched.

The “Function check” condensed state can also switch the fault alarm contact in Code 32.

The “Maintenance required/demanded” condensed state can also switch the fault alarm contact in Code 33.

8.3.1 Confirming error messages

Enable configuration:

Note: If no settings are entered within 120 seconds, the enabled configuration function becomes invalid.

Turn ![Code 3] ON
Press ![Code 3], Code 3 blinks
Press ![ON], display:

Confirm error messages:

Turn ![Error code which you want to confirm]
Press ![to confirm the error message]
9 Adjusting the limit switch

The positioner version with inductive limit switch has one adjustable tag (1) mounted on the shaft which operates the proximity switch (3).

For operation of the inductive limit switch, the corresponding switching amplifier (see section 5.2.1) must be connected to the output.

If the tag (1) is inside the field of the switch, the switch assumes a high resistance. If the tag is outside of the field, the switch assumes a low resistance.

Normally, the limit switch is adjusted such that it will provide a signal in both end positions of the valve. The switch, however, can also be adjusted to indicate intermediate valve positions.

The desired switching function, i.e. whether the output relay shall be picked up or released when the tag has entered the field, has to be determined, if necessary, at the switching amplifier.

Note:
The inductive limit switch replaces the software limit switch A1 with terminal assignment +41/-42.
Each switching position can optionally be set to indicate when the tag has entered the field, or when it has left the field.
The second software limit switch remains effective, the function of the software limit switch A1 is disabled.
Software adaptation

Code 38 (inductive alarm is set to YES). The inductive limit switch is connected to the terminals +41/-42. The device is set up accordingly when delivered ex works SAMSON.

Setting the switching point:

NOTICE
During adjustment or testing, the switching point must always be approached from mid-position (50%).

To ensure safe switching under any ambient conditions, the switching point should be adjusted to a value of approx. 5 % before the mechanical stop (OPEN – CLOSED).

For CLOSED position:
1. Initialize positioner.
2. Use the **MAN** function to move the positioner to 5 % (see LC display).
3. Adjust the tag using the yellow adjustment screw (2) until the tag enters or leaves the field and the switching amplifier responds. You can measure the switching voltage as an indicator.

Contact function:
- Tag leaving the field > contact is made
- Tag entering the field > contact is opened

For OPEN position:
1. Initialize positioner.
2. Use the **MAN** function to move the positioner to 95 % (see LC display).
3. Adjust the tag (1) using the yellow adjustment screw (2) until the tag enters or leaves the field of the proximity switch (3). You can measure the switching voltage as an indicator.

Contact function:
- Tag leaving the field > Contact is made.
- Tag entering the field > Contact is opened.
9.1 Retrofitting an inductive limit switch

Required retrofit kit:
Limit switch Order no. 1400-7460

Note: For explosion-protected devices, the requirements in section 11 need to be kept.

1. Take off the rotary pushbutton (3) and cap (1), unthread the five fixing screws (2) and lift off the plastic cover (9), taking care not to damage the ribbon cable (between PCB and display).
2. Use a knife to cut an opening at the marked location (4).
3. Push the connector (11) with cable through the opening and secure the proximity switch (7) on the cover with a dot of glue.
4. Remove the jumper (item no. 8801-2267) at the socket X7 of the top board and insert the cable connector (11).
5. Guide the cable in such a manner that the plastic cover can be placed back onto the positioner. Insert the fixing screws (2) and screw tight. Attach the clamping plate (8) onto the proximity switch.
6. Attach the rotary switch (5). Make sure the flattened side of the positioner shaft is turned so that the rotary switch (5) can be attached with the metal tag next to the proximity switch.
7. Note: On start-up of the positioner, set the option "inductive alarm" under Code 38 from No to YES.
10 Maintenance

The positioner does not require any maintenance.

There are filters with a 100 μm mesh size in the pneumatic connections for supply and output which can be removed and cleaned, if required.

The maintenance instructions of any upstream supply air pressure reducing stations must be observed.

11 Servicing explosion-protected devices

If a part of the device on which the explosion protection is based needs to be serviced, the device must not be put back into operation until a qualified inspector has assessed it according to explosion protection requirements, has issued an inspection certificate or given the device a mark of conformity.

Inspection by a qualified inspector is not required if the manufacturer performs a routine test on the device prior to putting it back into operation. The passing of the routine test must be documented by attaching a mark of conformity to the device. Replace explosion-protected components only by original, routine-tested components from the manufacturer.

Devices that have already been operated outside hazardous areas and are intended for future use inside hazardous areas must comply with the safety requirements placed on serviced devices. Before being used inside hazardous areas, test the devices according to the specifications for servicing explosion-protected devices.

Read section 13 for maintenance, calibration and adjustment work inside and outside hazardous areas.

12 Firmware update (serial interface)

Firmware updates on positioners currently in operation can be performed as follows:

When updates are performed by a service employee appointed by SAMSON, the update is confirmed on the positioner by the test mark assigned by SAMSON’s Quality Assurance.

In all other cases, only persons from the plant operator with written approval may perform updates. This person must confirm the update on the positioner.

Laptops and PCs connected to the power supply must use an additional safety barrier.

This does not apply to laptops in battery operation. In this case, it is assumed that a battery-powered laptop runs briefly for software programming or for testing purposes.

a) Updates outside the hazardous area:

Remove the positioners from the plant and update them outside the hazardous area.
b.) Updates on site:

Updates on site are only permitted after the plant operator has presented a signed hot work permit.

After updating has been completed, add the current firmware to the nameplate; this can be done using labels.

13 Maintenance, calibration and work on equipment

The interconnection with intrinsically safe circuits to check or calibrate the apparatus must only be performed with intrinsically safe current/voltage calibrators and measuring instruments to rule out any damage to components relevant for explosion protection.

The maximum values for intrinsically safe circuits specified in the approvals must be kept.
14 Code list

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Parameter – Readings, values [default setting]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Operating mode</td>
<td>Switchover from automatic to manual mode is smooth. In fail-safe mode, S appears on the display. In MAN and AUTO mode, the system deviation is represented by the bar graph elements. When the positioner is initialized, the numerical display indicates the valve position or the angle of rotation in %, otherwise the position of the lever in relation to the central axis is displayed in degrees °.</td>
</tr>
<tr>
<td></td>
<td>MAN Manual mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AUTO Automatic mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SAFE Fail-safe position</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ESC Escape</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Manual w 0 to 100 [0] % of the nominal range</td>
<td>Adjust the manual set point with the rotary pushbutton, the current travel/angle is displayed in % when the positioner is initialized, otherwise the position of the lever in relation to the central axis is indicated in degrees °. Note: Can only be selected when Code 0 = MAN</td>
</tr>
<tr>
<td></td>
<td>ESC</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Reading direction [Normal] or upside down</td>
<td>The reading direction of the display is turned by 180°.</td>
</tr>
<tr>
<td></td>
<td>ESC</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Enable configuration [No] YES ESC</td>
<td>Enables the option to modify data (automatically deactivated when the rotary pushbutton has not been operated for 120 s.) HART blinks on the display when the on-site operation is locked. Codes marked with an asterisk (*) can only be read and not overwritten. Likewise, codes can only read over the SSP interface.</td>
</tr>
</tbody>
</table>

Note: Codes with marked with an asterisk (*) must be enabled with Code 3 prior to configuration.
Code list

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Parameter – Readings, values [default setting]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note: Codes with marked with an asterisk (*) must be enabled with Code 3 prior to configuration.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4* Pin position

- [No]
- 17, 25, 35, 50, 70, 100, 200 mm
- 90° with rotary actuators

Note: If you select a pin position in Code 4 that is too small, the positioner switches to SAFE mode for reasons of safety

<table>
<thead>
<tr>
<th>Pin position</th>
<th>Standard</th>
<th>Adjustment range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code 4</td>
<td>Code 5</td>
<td>Code 5</td>
</tr>
<tr>
<td>17</td>
<td>7.5</td>
<td>3.6 to 17.7</td>
</tr>
<tr>
<td>25</td>
<td>7.5</td>
<td>5.0 to 25.0</td>
</tr>
<tr>
<td>35</td>
<td>15.0</td>
<td>7.0 to 35.4</td>
</tr>
<tr>
<td>50</td>
<td>30.0</td>
<td>10.0 to 50.0</td>
</tr>
<tr>
<td>70</td>
<td>40.0</td>
<td>14.0 to 70.7</td>
</tr>
<tr>
<td>100</td>
<td>60.0</td>
<td>20.0 to 100.0</td>
</tr>
<tr>
<td>200</td>
<td>120.0</td>
<td>40.0 to 200.0</td>
</tr>
<tr>
<td>90°</td>
<td>90.0</td>
<td>24.0 to 100.0</td>
</tr>
</tbody>
</table>

5* Nominal range

- [15.0] mm or angle °

Note: For initialization using NOM or Sub, the nominal travel/angle of rotation of the valve must be entered. The permissible adjustment range depends on the pin position according to the table for Code 4.

After initialization has been successfully completed, the maximum nominal travel/angle reached on initialization is displayed.

6* Init mode

- [MAX]
- NOM
- MAN
- Sub
- ZP
- ESC

Select the initialization mode

- **MAX:** Travel/angle of the closure member from the CLOSED position to the opposite stop in the actuator.
- **NOM:** Travel/angle of the closure member measured from the CLOSED position to the indicated OPEN position.
- **MAN:** Manually selected range
- **Sub:** Substitute calibration (without initialization)
- **ZP:** Zero calibration
<table>
<thead>
<tr>
<th>Code no.</th>
<th>Parameter – Readings, values [default setting]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7* w/x</td>
<td>increasing/increasing</td>
<td>Direction of action of the reference variable w in relation to the travel/angle of rotation x.</td>
</tr>
<tr>
<td></td>
<td>increasing/decreasing</td>
<td>Automatic adaptation: AIR TO OPEN: On completing initialization, the direction of action remains increasing/increasing (↗/+), a globe valve opens as the mA signal increases. AIR TO CLOSE: On completing initialization, the direction of action changes to increasing/decreasing (↗/−), a globe valve closes as the mA signal increases.</td>
</tr>
<tr>
<td>8*</td>
<td>Travel/angle range start (lower x-range value)</td>
<td>Lower range value for the travel/angle of rotation in the nominal or operating range. The operating range is the actual travel/angle of the control valve and is limited by the lower x-range value (Code 8) and the upper x-range value (Code 9). Usually, the operating range and the nominal range are identical. The nominal range can be limited to the operating range by the lower and upper x-range values. Value is displayed or must be entered. The characteristic is adapted. See also the example in Code 9!</td>
</tr>
<tr>
<td></td>
<td>0.0 to 80.0 [0.0] % of the nominal range</td>
<td>ESC</td>
</tr>
<tr>
<td>Note:</td>
<td>Specified in mm or angle ° provided Code 4 is set</td>
<td></td>
</tr>
<tr>
<td>9*</td>
<td>Travel/angle range end (upper x-range value)</td>
<td>Upper range value for the travel/angle of rotation in the nominal or operating range. Value is displayed or must be entered. The characteristic is adapted. Example: The operating range is modified, for example, to limit the range of a control valve which has been sized too large. For this function, the entire resolution range of the reference variable is converted to the new limits. 0 % on the display corresponds to the adjusted lower limit and 100 % to the adjusted upper limit.</td>
</tr>
<tr>
<td></td>
<td>20.0 to 100.0 [100.0] % of the nominal range</td>
<td>ESC</td>
</tr>
<tr>
<td>Note:</td>
<td>Specified in mm or angle ° provided Code 4 is set</td>
<td></td>
</tr>
<tr>
<td>10*</td>
<td>Travel/angle lower limit (lower x-limit)</td>
<td>Limitation of the travel/angle of rotation downwards to the entered value, the characteristic is not adapted. The characteristic is not adapted to the reduced range. See also example in Code 11.</td>
</tr>
<tr>
<td></td>
<td>0.0 to 49.9 % of the operating range [No], ESC</td>
<td></td>
</tr>
<tr>
<td>Code no.</td>
<td>Parameter – Readings, values [default setting]</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| **11** | **Travel/angle upper limit** *(upper x-limit)*
50.0 to 120.0 [100] % of the operating range
No, ESC | Limitation of the travel/angle of rotation upwards to the entered value, the characteristic is not adapted.
Example: In some applications, it is better to limit the valve travel, e.g. if a certain minimum medium flow is required or a maximum flow must not be reached.
The lower limit must be adjusted with Code 10, and the upper limit with Code 11.
If a tight-closing function has been set up, it has priority over the travel limitation!
When set to No, the valve can be opened past the nominal travel with a reference variable outside of the 0 to 100 % range. |
| **12** | **w-start**
0.0 to 75.0 [0.0] % of the reference variable range
ESC | Lower range value of the applicable reference variable range must be smaller than the final value w-end, 0 % = 4 mA
The reference variable range is the difference between w-end and w-start, and must be $\Delta w \geq 25 \% = 4$ mA.
For an adjusted reference variable range of 0 to 100 % = 4 to 20 mA, the control valve must move through its entire operating range from 0 to 100 % travel/angle of rotation.
In split-range operation, the valves operate with smaller reference variables. The control signal of the control unit to control two valves is divided such, for instance, that the valves move through their full travel/angle of rotation at only half the input signal (first valve set to 0 to 50 % = 4 to 12 mA and second valve set to 50 to 100 % = 12 to 20 mA reference variable). |
| **13** | **w-end**
25.0 to 100.0 [100.0] % of the reference variable range
ESC | Upper range value of the applicable reference variable range, must be greater than w-start.
100 % = 20 mA |
| **14** | **Reference variable range start** *(w-start)*
0.0 to 49.9 [1.0] % of the span adjusted via Code 12/13
No, ESC | If w approaches the percentage adjusted at the final value that causes the valve to close, the actuator is immediately completely vented (with AIR TO OPEN) or filled with air (with AIR TO CLOSE). This action always lead to maximum tight-closing of the valve.
Codes 14/15 have priority over Codes 8/9/10/11.
Codes 21/22 have priority over Codes 14/15. |
<table>
<thead>
<tr>
<th>Code no.</th>
<th>Parameter – Readings, values [default setting]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15*</td>
<td>Reference variable range end (w·end) 50.0 to 100.0 % of the span adjusted via Code 12/13 [No], ESC</td>
<td>If (w) approaches the percentage adjusted at the final value that causes the valve to open, the actuator is immediately completely filled with air (with AIR TO OPEN) or vented (with AIR TO CLOSE). This action always lead to the valve being completely opened. Codes 14/15 have priority over Codes 8/9/10/11. Codes 21/22 have priority over Codes 14/15. Example: Set the final position (w >) to 99 % for three-way valves.</td>
</tr>
<tr>
<td>16*</td>
<td>Pressure limit [No] 1.4 2.4 3.7 bar ESC</td>
<td>The signal pressure to the actuator can be limited in stages. After changing a pressure limit already set, the actuator must be vented once (e.g. by selecting the fail-safe position (SAFE) over Code 0). NOTICE Do not activate the pressure limit for double-acting actuators with valve closed position AIR TO OPEN (AtO).</td>
</tr>
<tr>
<td>17*</td>
<td>Proportional-action coefficient KP (step) 0 to 17 [7] ESC</td>
<td>Displaying or changing (K_P) Note on changing the (K_P) and (T_V) steps: During the initialization of the positioner, the (K_P) and (T_V) values are optimized. Should the positioner show a tendency for impermissibly high post-pulse oscillation due to additional interference, the (K_P) and (T_V) steps can be adapted after the initialization. For this, either the (T_V) step can be increased in increments until the desired response behavior is reached or, when the maximum value of 4 is reached, the (K_P) step can be decreased in increments. NOTICE Changing the (K_P) step influences the system deviation.</td>
</tr>
<tr>
<td>18*</td>
<td>Rate time TV (step) 1 [2] 3 4 No No, ESC</td>
<td>Displaying or changing (T_V), see note under (K_P) step A change of the (T_V) step has no effect on the system deviation.</td>
</tr>
</tbody>
</table>

Note: Codes with marked with an asterisk (*) must be enabled with Code 3 prior to configuration.
<table>
<thead>
<tr>
<th>Code no.</th>
<th>Parameter – Readings, values [default setting]</th>
<th>Description</th>
</tr>
</thead>
</table>
| **19** | **Tolerance band**
0.1 to 10.0 [5.0] % of the operating range
ESC | Used for error monitoring
Determination of the tolerance band in relation to the operating range.
Associated lag time [30] s is a reset criterion.
If a transit time is determined during initialization which is six times > 30 s, the six-fold transit time is accepted as the lag time. |
| **20** | **Characteristic**
0 to 9 [0]
ESC | Select the characteristic:
0 Linear
1 Equal percentage
2 Reverse equal percentage
3 SAMSON butterfly valve linear
4 SAMSON butterfly valve equal percentage
5 VETEC rotary plug valve linear
6 VETEC rotary plug valve equal percentage
7 Segmented ball valve linear
8 Segmented ball valve equal percentage
9 User-defined (defined over operating software)
Note: The various characteristics are listed in the Appendix (section 17). |
| **21** | **Required transit time OPEN**
(w ramp open)
0 to 240 s [0]
ESC | The time required to pass through the operating range when the valve opens.
Limitation of the transit time (Code 21 and 22):
For some applications it is recommendable to limit the transit time of the actuator to prevent it from engaging too fast in the running process.
Code 21 has priority over Code 15.
NOTICE
The function is not activated when the fail-safe function or solenoid valve is triggered nor upon failure of the auxiliary power. |
| **22** | **Required transit time CLOSED**
(w ramp closed)
[0] to 240 s
ESC | The time required to pass through the operating range when the valve closes.
Code 22 has priority over Code 14.
NOTICE
The function is not activated when the fail-safe function or solenoid valve is triggered nor upon failure of the auxiliary power. |
<table>
<thead>
<tr>
<th>Code no.</th>
<th>Parameter – Readings, values [default setting]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>23*</td>
<td>Total valve travel
0 to 99 · 10⁷ [0]
Exponential reading from 9999 travel cycles onwards
RES, ESC</td>
<td>Totaled double valve travel. Can be reset to 0 over Code 36 - Std. Note: The total valve travel is saved in a non-volatile memory after every 1000 double travel.</td>
</tr>
<tr>
<td>24*</td>
<td>LV total valve travel
1000 to 99 · 10⁷ [1 000 000]
Exponential reading from 9999 travel cycles onwards
ESC</td>
<td>Limit value of total valve travel. If the limit is exceeded, (\square) and (\square) icons appear on the display.</td>
</tr>
<tr>
<td>25*</td>
<td>Alarm mode
0 to 3 [2]
ESC</td>
<td>Switching mode of software limit switches alarm A1 and A2 in responding state (when positioner has been initialized).
1) Explosion-protected version according to EN 60947-5-6
0: A1 ≥ 2.1 mA A2 ≤ 1.2 mA
1: A1 ≤ 1.2 mA A2 ≤ 1.2 mA
2: A1 ≥ 2.1 mA A2 ≥ 2.1 mA
3: A1 ≤ 1.2 mA A2 ≥ 2.1 mA
2) Version without explosion protection
0: A1 R = 348 Ω A2 Non-conducting
1: A1 Non-conducting A2 Non-conducting
2: A1 R = 348 Ω A2 R = 348 Ω
3: A1 Non-conducting A2 R = 348 Ω
When a positioner has not been initialized, the software limit switches always register the signal as in the state of no response. If there is no mA signal at the terminals 11/12, the software limit switches both switch to ≤ 1.2 mA signal (Ex) or non-conducting (without explosion protection). Note: The fault alarm output always switches to ≤ 1.2 mA/ non-conducting in case of fault arises; it has ≥ 1.2 mA/R = 348 Ω when there is no fault.</td>
</tr>
</tbody>
</table>

Note: Codes with marked with an asterisk (*) must be enabled with Code 3 prior to configuration.
Code list

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Parameter – Readings, values [default setting]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Limit value A1</td>
<td>Alarm A1 goes into the state of response when the value exceeds the limit. Displaying or changing the software limit value A1 in relation to the operating range. Setting has no effect when an inductive limit switch has been installed.</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0 to 100.0 [2.0] % of the operating range</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ESC</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Limit value A2</td>
<td>Alarm A2 goes into the state of response when the value falls below the limit. Displaying or changing the software limit value A2 in relation to the operating range.</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0 to 100.0 [98.0] % of the operating range</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ESC</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Alarm test</td>
<td>Testing the software limit switches alarm A1 and A2 in addition to the fault alarm contact A3. If the test is activated, the respective limit switches five times. RUN1/1 RUN: Software limit switch A1 to ≥ 2.1 mA RUN2/2 RUN: Software limit switch A2 to ≥ 2.1 mA RUN3/3 RUN: Fault alarm contact A3 to ≤ 1.2 mA</td>
</tr>
<tr>
<td></td>
<td>Reading direction:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standard [No]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turned [No]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RUN 1 1 RUN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RUN 2 2 RUN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RUN 3 3 RUN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ESC ESC</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Position transmitter x/ix 3)</td>
<td>Operating direction of the position transmitter; indicates how the travel/angle position is assigned to the output signal i, based on the closed position. The operating range (see Code 8) of the valve is represented by the 4 to 20 mA signal. Values exceeding or falling below the limits 2.4 to 21.6 mA can be represented. When a positioner has not been initialized (reference variable less than 3.6 mA), the power consumption of the feedback signal is effective (current approx. 1.8 mA). When YES is set in Code 32, the position transmitter issues the value as per Code 30 during initialization or zero calibration. When NO is set in Code 32, 4 mA is issued during a running self-adaptation.</td>
</tr>
<tr>
<td></td>
<td>[ני]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[ני]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ESC</td>
<td></td>
</tr>
</tbody>
</table>

Note: Codes with marked with an asterisk (*) must be enabled with Code 3 prior to configuration.
<table>
<thead>
<tr>
<th>Code no.</th>
<th>Parameter – Readings, values [default setting]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30*</td>
<td>Fault alarm ix 3)</td>
<td>Used to select whether faults causing the fault alarm contact to switch should also be signaled by the position transmitter output and how they should be signaled. HI ix = 21.6 ±0.1mA or LO ix = 2.4 ±0.1mA</td>
</tr>
<tr>
<td>31*</td>
<td>Position transmitter test 3)</td>
<td>Testing the position transmitter. Values can be entered in relation to the operating range. The current actual value is used in initialized positioners locally as the start value (bumpless changeover to the test mode). On testing over software, the entered simulation value is issued as the position feedback signal for 30 seconds.</td>
</tr>
<tr>
<td>32*</td>
<td>Fault alarm with “Function check” condensed state</td>
<td>YES: Fault alarm also with “Function check” condensed state. No: “Function check” condensed state does not cause a fault alarm to be issued.</td>
</tr>
<tr>
<td>33*</td>
<td>Fault alarm with “Maintenance alarm” or “Maintenance required” condensed state</td>
<td>YES: Fault alarm only with “Maintenance alarm” condensed state and with “Maintenance required” condensed state. No: Fault alarm only with “Maintenance alarm” condensed state.</td>
</tr>
<tr>
<td>34*</td>
<td>Closing direction</td>
<td>CL: Clockwise, CCL: Counterclockwise. Turning direction in which the valve is moved to the CLOSED position (view onto the rotary switch motion when the positioner cover is open). Needs only be entered in initialization mode SUb (Code 6).</td>
</tr>
<tr>
<td>35*</td>
<td>Blocking position</td>
<td>Entering the blocking position. Distance up to the CLOSED position.</td>
</tr>
</tbody>
</table>

Note: Analog position transmitter: Code 29/30/31 can only be selected if the position transmitter (optional) is installed.

Note: Codes with marked with an asterisk (*) must be enabled with Code 3 prior to configuration.
<table>
<thead>
<tr>
<th>Code no.</th>
<th>Parameter – Readings, values [default setting]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>36*</td>
<td>Reset [No] Std · diAG ESC</td>
<td>Std: Resets all parameters to default (factory setting) as well as the diagnosis data. After a reset, the positioner must be re-initialized. diAG: Resets diagnosis data only. Plotted reference graphs and logs remain unaffected. The positioner does not need to be re-initialized.</td>
</tr>
<tr>
<td>37</td>
<td>Position transmitter No · YES</td>
<td>Display only, indicates whether the position transmitter option is installed.</td>
</tr>
<tr>
<td>38*</td>
<td>Inductive alarm [No], YES, ESC</td>
<td>Indicates whether the inductive limit switch option is installed or not.</td>
</tr>
<tr>
<td>39</td>
<td>System deviation e info –99.9 to 999.9 %</td>
<td>Display only, indicates the deviation from the target position (e = w – x).</td>
</tr>
<tr>
<td>40</td>
<td>Transit time Open info 0 to 240 s [0]</td>
<td>Display only, minimum opening time determined during initialization.</td>
</tr>
<tr>
<td>41</td>
<td>Transit time Closed info 0 to 240 s [0]</td>
<td>Display only, minimum closing time determined during initialization.</td>
</tr>
<tr>
<td>42</td>
<td>Auto-w/manual-w info 0.0 to 100.0 % of the span 4 to 20 mA</td>
<td>Display only, Supplied automatic reference variable according to 4 to 20 mA</td>
</tr>
<tr>
<td>43</td>
<td>Firmware info Xxxx</td>
<td>Display only, indicates the positioner type and current firmware version in alternating sequence.</td>
</tr>
<tr>
<td>44</td>
<td>y info [0] to 100 % 0 P, MAX, – – –</td>
<td>Display only. Indicates the control signal y in % based on the travel range determined on initialization MAX: The positioner builds up its maximum output pressure, see description in Code 14 and 15. 0 P: The positioner vents completely, see description in Code 14 and 15. – – –: The positioner is not initialized.</td>
</tr>
</tbody>
</table>

Note: Codes with marked with an asterisk (*) must be enabled with Code 3 prior to configuration.
<table>
<thead>
<tr>
<th>Code no.</th>
<th>Parameter – Readings, values [default setting]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>Solenoid valve info</td>
<td>Display only, indicates whether a solenoid valve is installed or not. If a voltage supply is connected at the terminals of the installed solenoid valve, YES and HIGH appear on the display in alternating sequence. If a voltage supply is not connected (actuator vented, fail-safe position indicated on the display by the $ icon), YES and LOW appear on the display in alternating sequence.</td>
</tr>
<tr>
<td>46*</td>
<td>Bus address</td>
<td>Select bus address</td>
</tr>
<tr>
<td>47*</td>
<td>Write protection HART</td>
<td>When the write protection function is activated, device data can only be read, but not overwritten over HART® communication.</td>
</tr>
<tr>
<td>48*</td>
<td>Diagnostics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diagnosis parameters d</td>
<td></td>
</tr>
<tr>
<td>d0</td>
<td>Temperature</td>
<td>Current operating temperature [°C] inside the positioner (accuracy ± 3 %) Display only</td>
</tr>
<tr>
<td>d1</td>
<td>Minimum temperature</td>
<td>The lowest temperature below 20 °C that has ever occurred. Display only</td>
</tr>
<tr>
<td>d2</td>
<td>Maximum temperature</td>
<td>The highest temperature above 20 °C that has ever occurred. Display only</td>
</tr>
<tr>
<td>d3</td>
<td>Number of zero calibrations</td>
<td>The number of zero calibrations since the last initialization. Display only</td>
</tr>
<tr>
<td>d4</td>
<td>Number of initializations</td>
<td>The number of initializations that have been performed since the last reset. Display only</td>
</tr>
<tr>
<td>d5</td>
<td>Zero point limit</td>
<td>User-defined zero point monitoring Used for error monitoring of the zero point shift.</td>
</tr>
</tbody>
</table>

Note: Codes with marked with an asterisk (*) must be enabled with Code 3 prior to configuration.
Code list

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Parameter – Readings, values [default setting]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note: Codes with marked with an asterisk (*) must be enabled with Code 3 prior to configuration.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d6 Condensed state</td>
<td>Condensed state, made up from the individual states · Display only · Display only</td>
</tr>
<tr>
<td></td>
<td>OK · C · CR · b · S</td>
<td>OK · Okay · C · Maintenance required · CR · Maintenance demanded · b · Maintenance alarm · S · Out of specification</td>
</tr>
<tr>
<td></td>
<td>d7 Start reference test</td>
<td>Starts reference test for Drive signal y steady-state (d1) and drive signal y hysteresis (d2) (Tests).</td>
</tr>
<tr>
<td></td>
<td>[No] · ON · ESC</td>
<td>The reference test can only be activated in manual mode (MAN) as the valve moves through its entire working range.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If EXPERTplus is activated in older positioners at a later point in time, the reference graphs must be plotted in order to activate the diagnostic functions.</td>
</tr>
<tr>
<td></td>
<td>d8 Unassigned</td>
<td>Firmware version 1.4x and lower:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enter the activation code for EXPERTplus.</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>Diagnosis parameters h</td>
</tr>
<tr>
<td></td>
<td>h0 Initialization with reference test</td>
<td>The reference graphs for Drive signal y steady-state (d1) and drive signal y hysteresis (d2) (Tests) are plotted during the reference test.</td>
</tr>
<tr>
<td></td>
<td>[No] · YES · ESC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h1 Reference test result</td>
<td>Display only</td>
</tr>
<tr>
<td></td>
<td>[No] · YES</td>
<td>No · No reference test has been performed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>YES · The reference graphs for Drive signal y steady-state (d1) and drive signal y hysteresis (d2) (Tests) have been plotted successfully.</td>
</tr>
<tr>
<td></td>
<td>h2</td>
<td>– Unassigned</td>
</tr>
<tr>
<td></td>
<td>h3 Auto reset diAG</td>
<td>After an adjustable time period, the diagnosis data are reset automatically according to the settings in Code 36 · diAG.</td>
</tr>
<tr>
<td></td>
<td>0 to 365 days; [0 days]</td>
<td>Example: A start-up behavior of the plant which is untypical for the process is not to be included in the total diagnosis.</td>
</tr>
<tr>
<td>Code no.</td>
<td>Parameter – Readings, values [default setting]</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>48*</td>
<td>h4 Rest time for auto reset diAG</td>
<td>Display only Remaining time until the diagnosis data are reset automatically according to the settings in Code 48 - h3</td>
</tr>
<tr>
<td>49*</td>
<td>Partial stroke test (PST)/Full stroke test (FST) - Application type</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A Partial stroke test (PST)</td>
<td></td>
</tr>
<tr>
<td>A0</td>
<td>Start Partial Stroke Test [No] · YES · ESC</td>
<td>Operating mode and PST testing mode must be set to MAN.</td>
</tr>
<tr>
<td>A1</td>
<td>Time until the next automatic PST test takes place</td>
<td>Display only Remaining time [d_h] until the next partial stroke test is performed. Only applies to PST Auto mode.</td>
</tr>
<tr>
<td>A2</td>
<td>Desired PST testing mode Auto · [Man] · ESC</td>
<td>Activates (PST Auto) or deactivates (PST Man) the scheduled automatic partial stroke test.</td>
</tr>
<tr>
<td>A3</td>
<td>Auto test time</td>
<td>Time [h] between for partial stroke tests (PST)</td>
</tr>
<tr>
<td>A4</td>
<td>Status classification PST status [C] · OK · CR · b · S ESC</td>
<td>Maintenance required No message Maintenance demanded Maintenance alarm Out of specification</td>
</tr>
<tr>
<td>A5</td>
<td>Min. recommended scan time</td>
<td>Display only Scan time [s] required to plot the complete step response test in a graph.</td>
</tr>
<tr>
<td>A6</td>
<td>– Unassigned</td>
<td></td>
</tr>
<tr>
<td>Code no.</td>
<td>Parameter – Readings, values [default setting]</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| 49* | A7 y-monitoring reference value | Display only
The valve moves to the valve position *Step start* (Code 49 - d2) and *Step end* (Code 49 - d3) with certain control pulses. The difference between these control pulses creates the delta y value [1/s].
The y-monitoring reference value applies to the adjusted step values (Code 49 - d2 and Code 49 - d3) and for the selected ramp times (Code 49 - d5 and Code 49 - d6). The y-monitoring reference value must be determined again if any of the above mentioned values change. |
| A8 | Activation delta y-monitoring
[No] · YES · ESC | Activates/deactivates delta y-monitoring |
| A9 | delta y-monitoring value
0 to 100 %, [10 %] | The percentage [%] of the entire range of the control pulse between 1 and 10000 1/s (Example: 10 % = 10000 1/s)
The partial stroke test is canceled if the change in control signal (delta y) varies from the y-monitoring reference value by this amount. |
| **d** | Step parameters for the partial stroke test (PST) | |
| d1 | – Unassigned | |
| d2 | Step start
0.0 to 100.0 %
[95.0 %] | Start value to perform the step response test |
| d3 | Step end
0.0 to 100.0 %
[90.0 %] | End value to perform the step response test |
| d4 | Activation of the ramp function
[No] · YES | Activates/deactivates the ramp function. |
| d5 | Ramp time (rising)
0 to 9999 s, [15 s] | Ramp time for 0 to 100 % travel (rising) of the ramp function.
Do not enter a ramp time which is lower than the value automatically given during initialization. |

Note: Codes with marked with an asterisk (*) must be enabled with Code 3 prior to configuration.
<table>
<thead>
<tr>
<th>Code no.</th>
<th>Parameter – Readings, values [default setting]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>49*</td>
<td>d6 Ramp time (falling) 0 to 9999 s, [15 s]</td>
<td>Ramp time for 0 to 100 % travel (falling) of the ramp function. Do not enter a ramp time which is lower than the value automatically given during initialization.</td>
</tr>
<tr>
<td></td>
<td>d7 Settling time before test start 1.0 to 240.0 s, [10.0 s]</td>
<td>Waiting time before the test starts to allow the valve to safely reach the step start value.</td>
</tr>
<tr>
<td></td>
<td>d8 Delay time after step 1.0 to 240.0 s, [2.0 s]</td>
<td>Time after the first step until the second step starts.</td>
</tr>
<tr>
<td></td>
<td>d9 Scan time 0.2 to 250.0 s, [0.2 s]</td>
<td>Scan time of the step response test</td>
</tr>
<tr>
<td>E</td>
<td>Cancelation conditions of the partial stroke test (PST)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E0 Activation x control [No] · YES</td>
<td>Activates/deactivates x control.</td>
</tr>
<tr>
<td></td>
<td>E1 x control value –10.0 to 110.0 % of total trave, [0.0 %]</td>
<td>The test is automatically canceled as soon as the valve position falls below this value.</td>
</tr>
<tr>
<td></td>
<td>E2 – Unassigned</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E3 – Unassigned</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E4 – Unassigned</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E5 Activation tolerance band control [No] · YES</td>
<td>Activates/deactivate tolerance band control.</td>
</tr>
<tr>
<td></td>
<td>E6 PST Tolerance band 0.1 to 100.0 %, [5.0 %]</td>
<td>The test is automatically canceled as soon as the Step end (Code 49 - d3) exceeds this value.</td>
</tr>
<tr>
<td></td>
<td>E7 Max. test duration 30 to 250000 s, [30 s]</td>
<td>Maximum time within which a test can be completed before the test is canceled automatically.</td>
</tr>
<tr>
<td>F</td>
<td>Partial stroke test (PST) information · Display only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F0 No test available</td>
<td>No test exists or the test has been canceled manually.</td>
</tr>
<tr>
<td></td>
<td>F1 Test OK</td>
<td></td>
</tr>
</tbody>
</table>
Code list

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Parameter – Readings, values [default setting]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>F2 x cancelation</td>
<td>The test was canceled by the x cancelation function.</td>
</tr>
<tr>
<td></td>
<td>F3 y cancelation</td>
<td>The test was canceled by the y cancelation function.</td>
</tr>
<tr>
<td></td>
<td>F4 Tolerance band exceeded</td>
<td>The test was canceled. The x-values exceeded the tolerance band.</td>
</tr>
<tr>
<td></td>
<td>F5 Max. test time exceeded</td>
<td>The test was not completed within the maximum test time and was automatically canceled.</td>
</tr>
<tr>
<td></td>
<td>F6 Test man. canceled</td>
<td>The test has been manually canceled by the user.</td>
</tr>
<tr>
<td></td>
<td>F7 Measured data storage out of memory</td>
<td>The maximum capacity of the memory for measured data has been reached. After 100 measured data per measured variable have been recorded, the logging stops. However, the test is continued.</td>
</tr>
<tr>
<td></td>
<td>F8 Aborted by int. solenoid valve</td>
<td>The test was canceled by the activation of the solenoid valve.</td>
</tr>
<tr>
<td></td>
<td>F9 Supply pressure/friction</td>
<td>An insufficient supply pressure or excessive friction occurred during the test.</td>
</tr>
</tbody>
</table>

Application type of valve

<table>
<thead>
<tr>
<th>Code no.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>h0</td>
<td>Application type [No] · YES · ESC</td>
</tr>
<tr>
<td></td>
<td>No Control valve</td>
</tr>
<tr>
<td></td>
<td>YES Open/close (on/off) valve</td>
</tr>
<tr>
<td></td>
<td>Depending on the application type of valve that has been selected, the positioner has different diagnostic functions and behaves differently in the automatic mode (AUTO).</td>
</tr>
<tr>
<td>h1</td>
<td>Operating point 0.0 to 100.0 % valve position, [100.0 %]</td>
</tr>
<tr>
<td></td>
<td>The valve moves to this position as soon as the reference variable exceeds the Limit operating point (Code 49 - h5).</td>
</tr>
<tr>
<td>h2</td>
<td>Limit fail-safe position 0.0 to 20.0 % reference variable, [12.5 %]</td>
</tr>
<tr>
<td></td>
<td>The valves moves to the fail-safe position (SAFE) when the reference variable falls below this limit.</td>
</tr>
</tbody>
</table>

Note: Codes with marked with an asterisk (*) must be enabled with Code 3 prior to configuration.
<table>
<thead>
<tr>
<th>Code no.</th>
<th>Parameter – Readings, values [default setting]</th>
<th>Description</th>
</tr>
</thead>
</table>
| 49* | Lower limit test start [25.0 % reference variable] | Display only
The valve remains in its last valid position when the reference variable is between the Limit fail-safe position and Lower limit test.
A partial stroke test is started when the reference variable moves to the range between Lower limit test and Upper limit test and remains there longer than six seconds. |
| h4 | Upper limit test start [50.0 % reference variable] | Display only
The valve remains in its last valid position when the reference variable is between the Upper limit test and Limit operating point. |
| h5 | Limit operating point 55.0 to 100.0 % reference variable, [75.0 %] | The valve moves to the Operating point when the reference variable exceeds the Limit operating point. |
| h6 | – Unassigned | |
| h7 | Limit value time analysis 0.6 to 30.0 s, [0.6 s] | Time limit for the difference between the reference value and the latest recorded value. It determines at which difference value an alarm is to be generated. |
| h8 | Limit value travel analysis 0.1 to 100.0 % valve position, [0.3 %] | Travel limit for the difference between the reference value and the latest recorded value. It determines at which difference value an alarm is to be generated. |
| h9 | Status classification Close/open [C] · OK · CR · b · S ESC | C Maintenance required
OK No message
CR Maintenance demanded
b Maintenance alarm
S Out of specification |

Note: Codes with marked with an asterisk (*) must be enabled with Code 3 prior to configuration.

Note: The error codes listed in following appear in the display corresponding to their status classification set over the condensed state (Maintenance required/Maintenance demanded: assertNotNull, Out of specification: assertNotNull, Maintenance alarm: assertNotNull). If “No message” is assigned to the error code as the status classification, the error is not included in the condensed state. A status classification is assigned to every error code in the default setting. The status classification of error codes can also be changed as required using an operating software (e.g. TROVIS-VIEW). Refer to section 15.6.
Initialization errors

<table>
<thead>
<tr>
<th>Error codes – Recommended action</th>
<th>Condensed state alarm active, when prompted, Err appears. When fault alarms exist, they are displayed here.</th>
</tr>
</thead>
</table>
| 50 x > range | The value supplied by the measuring signal is either too high or too low, the measuring sensor is close to its mechanical limit.
• Pin positioned incorrectly.
• Bracket slipped in case of NAMUR attachment or positioner is not central.
• Follower plate incorrectly attached. |
| Status classification | [Maintenance required] |
| Recommended action | Check attachment and pin position, set operating mode from SAFE to MAN and re-initialize the positioner. |
| 51 Δx < range | The measuring span of the sensor is too low.
• Pin positioned incorrectly.
• Wrong lever.
A rotational angle smaller than 16° at the positioner shaft creates just an alarm. An angle below 9° leads to the initialization being canceled. |
| Status classification | [Maintenance required] |
| Recommended action | Check attachment and re-initialize the positioner. |
| 52 Attachment | • Positioner attachment incorrect.
• Nominal travel/angle (Code 5) could not be achieved during initialization under NOM (no tolerance downwards permissible).
• Mechanical or pneumatic fault, e.g. wrong lever selected or supply pressure too low to move to the required position. |
| Status classification | [Maintenance required] |
| Recommended action | Check attachment and supply pressure. Re-initialize the positioner.
Under certain circumstances, it may be possible to check the maximum travel/angle by entering the actual pin position and then performing an initialization under MAX.
After initialization has been completed, the Code 5 indicates the maximum achieved travel or angle. |
<table>
<thead>
<tr>
<th>Error codes – Recommended action</th>
<th>Condensed state alarm active, when prompted, Err appears. When fault alarms exist, they are displayed here.</th>
</tr>
</thead>
</table>
| 53 Initialization time exceeded (Init time >) | The initialization routine lasts too long.
• No pressure on the supply line or there is a leak.
• Supply air failure during initialization. |
| Status classification | [Maintenance required] |
| Recommended action | Check attachment and supply pressure.
Re-initialize the positioner. |
| 54 Initialization - solenoid valve | 1) A solenoid valve is installed (Code 45 = YES) and was not or not properly connected so that an actuator pressure could not be built up. The alarm is generated when you attempt to initialize the positioner.
2) If you attempt to initialize the device from the fail-safe position (SAFE). |
| Status classification | [Maintenance required] |
| Recommended action | Re. 1) Check connection and supply voltage of the forced venting Code 45 HIGH/LOW
Re. 2) Set the ****MAN**** operating mode over Code 0. Then initialize the positioner. |
| 55 Transit time too short (transit time <) | The actuator positioning rates determined during the initialization are so short that the positioner cannot adapt itself optimally. |
| Status classification | [Maintenance required] |
| Recommended action | Check the volume restriction setting as described in section 7.2, re-initialize the positioner. |
| 56 Pin position | Initialization was canceled because you are required to enter the pin position for the selected initialization modes **NOM** and **SUB**. |
| Status classification | [Maintenance required] |
| Recommended action | Enter pin position over Code 4 and nominal travel/angle over Code 5. Re-initialize the positioner. |
Operational errors

<table>
<thead>
<tr>
<th>Error codes – Recommended action</th>
<th>Condensed state alarm active, when prompted, Err appears. When fault alarms exist, they are displayed here.</th>
</tr>
</thead>
<tbody>
<tr>
<td>57 Control loop</td>
<td>Control loop error, the control valve does not react within the tolerable times of the controlled variable (tolerance band alarm Code 19).</td>
</tr>
</tbody>
</table>
| | • Actuator mechanically blocked.
| | • Attachment of the positioner subsequently shifted.
| | • Supply pressure not sufficient. |
| Status classification | [Maintenance required] |
| Recommended action | Check attachment. |
| 58 Zero point | Zero point incorrect.
| | Error may arise when the mounting position/linkage of the positioner moves or when the valve seat trim is worn, especially with soft-sealed plugs. |
| Status classification | [Maintenance required] |
| Recommended action | Check valve and mounting of the positioner. If OK, perform a zero calibration over Code 6 (see section 7.7 on page 64).
| | If the lever position on the back of the positioner has been changed (e.g. while exchanging the lever), move the lever as far as it will go in both directions to adapt it to the internal measuring lever. |
| 59 Autocorrection | Should an error occur in the data range of the positioner, the self-monitoring function recognizes it and automatically corrects it. |
| Status classification | [No message] |
| Recommended action | Automatic |
| 60 Fatal error | An error was detected in the data relevant for safety, autocorrection is not possible. This may be due to EMC disturbances.
| | The positioner changes to the fail-safe position (SAFE). |
| Status classification | Maintenance alarm (cannot be classified) |
| Recommended action | Reset over Code 36 - Std.
| | Re-initialize the positioner. |
Hardware errors

<table>
<thead>
<tr>
<th>Error codes – Recommended action</th>
<th>Condensed state alarm active, when prompted, Err appears. When fault alarms exist, they are displayed here.</th>
</tr>
</thead>
<tbody>
<tr>
<td>62 x signal</td>
<td>Determination of the measured data for the actuator has failed. Conductive plastic element is defective. The positioner continues to run in emergency mode, but should be replaced as soon as possible. The emergency mode on the display is indicated by a blinking closed-loop operation icon and 4 dashes instead of the position indication. Note on the closed-loop operation: If the measuring system has failed, the positioner is still in a reliable state. The positioner switches to emergency mode where the position cannot be accurately controlled anymore. However, the positioner continues operation according to its reference variable signal so that the process remains in a safe state.</td>
</tr>
<tr>
<td>Status classification</td>
<td>[Maintenance demanded]</td>
</tr>
<tr>
<td>Recommended action</td>
<td>Return the positioner to SAMSON AG for repair.</td>
</tr>
<tr>
<td>63 w too small</td>
<td>The reference variable is much smaller than 4 mA (0 %); occurs if the power source that drives the positioner does not comply with the standard. This state is indicated on the positioner display by a blinking LOW.</td>
</tr>
<tr>
<td>Recommended action</td>
<td>[No message]</td>
</tr>
<tr>
<td>Remedy</td>
<td>Check reference variable. If necessary, limit the current source downwards so that no values below 4 mA can be issued.</td>
</tr>
<tr>
<td>64 i/p converter</td>
<td>The circuit of the i/p converter has been interrupted.</td>
</tr>
<tr>
<td>Status classification</td>
<td>Maintenance alarm (cannot be classified)</td>
</tr>
<tr>
<td>Recommended action</td>
<td>Cannot be remedied. Return the positioner to SAMSON AG for repair.</td>
</tr>
<tr>
<td>Error codes – Recommended action</td>
<td>Condensed state alarm active, when prompted, Err appears. When fault alarms exist, they are displayed here.</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>65 Hardware</td>
<td>A hardware error has occurred, the positioner changes to the fail-safe position (SAFE).</td>
</tr>
<tr>
<td>Status classification</td>
<td>[Maintenance alarm]</td>
</tr>
<tr>
<td>Recommended action</td>
<td>Confirm error and return to the automatic operating mode, or perform a reset and re-initialize the device. If this is not successful, return device to SAMSON AG for repair.</td>
</tr>
<tr>
<td>66 Data memory</td>
<td>The writing of data to the data memory does not work anymore, e.g. when the written data deviate from the read data. Valve moves to the fail-safe position.</td>
</tr>
<tr>
<td>Status classification</td>
<td>Maintenance alarm (cannot be classified)</td>
</tr>
<tr>
<td>Recommended action</td>
<td>Return the positioner to SAMSON AG for repair.</td>
</tr>
<tr>
<td>67 Test calculation</td>
<td>The hardware controller is monitored by means of a test calculation.</td>
</tr>
<tr>
<td>Status classification</td>
<td>[Maintenance alarm]</td>
</tr>
<tr>
<td>Recommended action</td>
<td>Confirm error. If this is not possible, return the positioner to SAMSON AG for repair.</td>
</tr>
</tbody>
</table>
Data errors

<table>
<thead>
<tr>
<th>Error codes – Recommended action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condensed state alarm active, when prompted, \textit{Err} appears. When fault alarms exist, they are displayed here.</td>
<td></td>
</tr>
<tr>
<td>68 Control parameter</td>
<td>Control parameter error</td>
</tr>
<tr>
<td>Status classification</td>
<td>[Maintenance required]</td>
</tr>
<tr>
<td>Recommended action</td>
<td>Confirm error, perform reset and re-initialize the positioner.</td>
</tr>
<tr>
<td>69 Poti parameter</td>
<td>Parameter error of the digital potentiometer.</td>
</tr>
<tr>
<td>Status classification</td>
<td>[Maintenance required]</td>
</tr>
<tr>
<td>Recommended action</td>
<td>Confirm error, perform reset and re-initialize the positioner.</td>
</tr>
<tr>
<td>70 Calibration parameter</td>
<td>Error in the production calibration data. Subsequently, the device runs on default values.</td>
</tr>
<tr>
<td>Status classification</td>
<td>[Maintenance required]</td>
</tr>
<tr>
<td>Recommended action</td>
<td>Return the positioner to SAMSON AG for repair.</td>
</tr>
<tr>
<td>71 General parameters</td>
<td>Parameter errors that are not critical for the control.</td>
</tr>
<tr>
<td>Status classification</td>
<td>[Maintenance required]</td>
</tr>
<tr>
<td>Recommended action</td>
<td>Confirm error. Check and, if necessary, reset required parameters.</td>
</tr>
<tr>
<td>73 Internal device error 1</td>
<td>Internal device error</td>
</tr>
<tr>
<td>Status classification</td>
<td>[Maintenance required]</td>
</tr>
<tr>
<td>Recommended action</td>
<td>Return the positioner to SAMSON AG for repair.</td>
</tr>
<tr>
<td>74 HART parameters</td>
<td>Parameter errors that are not critical for the control.</td>
</tr>
<tr>
<td>Status classification</td>
<td>[Maintenance required]</td>
</tr>
<tr>
<td>Recommended action</td>
<td>Confirm error and perform reset.</td>
</tr>
<tr>
<td>75 Info parameters</td>
<td>Error in the info parameters that are not critical for the control.</td>
</tr>
<tr>
<td>Status classification</td>
<td>[Maintenance required]</td>
</tr>
<tr>
<td>Recommended action</td>
<td>Return the positioner to SAMSON AG for repair.</td>
</tr>
<tr>
<td>Error codes – Recommended action</td>
<td>Condensed state alarm active, when prompted, Err appears. When fault alarms exist, they are displayed here.</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>76 No emergency mode</td>
<td>The travel measuring system of the positioner has a self-monitoring function (see Code 62). An emergency mode (open-loop control) is not available for certain actuators, such as double-acting actuators. In this case, the positioner changes to the fail-safe position (SAFE) when a measuring error occurs. During the initialization, the positioner checks whether the actuator has such a function or not.</td>
</tr>
<tr>
<td>Status classification</td>
<td>[No message]</td>
</tr>
<tr>
<td>Recommended action</td>
<td>Merely information, confirm, if necessary. No further action necessary.</td>
</tr>
</tbody>
</table>

77 Program loading error	When the positioner starts operation for the first time after the input signal has been applied, it carries out a self-test (*tEStinG* runs across the display). If the positioner loads the wrong program, the valve moves to the fail-safe position. It is not possible to make the valve leave this fail-safe position again.
Additional alarm at the fault alarm contact	
Status classification	Maintenance alarm (cannot be classified)
Recommended action	Interrupt current and restart positioner. Otherwise, return the positioner to SAMSON AG for repair.

78 Options parameter	Errors in options parameters
Status classification	[Maintenance required]
Recommended action	Return the positioner to SAMSON AG for repair.
Diagnosis errors

<table>
<thead>
<tr>
<th>Error codes – Recommended action</th>
<th>Condensed state alarm active, when prompted, Err appears. When fault alarms exist, they are displayed here.</th>
</tr>
</thead>
<tbody>
<tr>
<td>79 Extended diagnostics</td>
<td>Alarms are generated by the extended EXPERTplus diagnostics if EXPERTplus has been activated under Code 48</td>
</tr>
<tr>
<td>Status classification</td>
<td>Maintenance required (cannot be classified)</td>
</tr>
<tr>
<td>80 Diagnostic parameters</td>
<td>Errors that are not critical for control.</td>
</tr>
<tr>
<td>Status classification</td>
<td>Maintenance required (cannot be classified)</td>
</tr>
<tr>
<td>Recommended action</td>
<td>Confirm error. Check and, if necessary, perform a new reference test</td>
</tr>
<tr>
<td>81 Reference graphs</td>
<td>An error occurred during plotting the reference graphs for drive signal y steady-state or drive signal y hysteresis.</td>
</tr>
<tr>
<td>Status classification</td>
<td>[Maintenance required]</td>
</tr>
<tr>
<td>Recommended action</td>
<td>Check and, if necessary, perform a new reference test</td>
</tr>
</tbody>
</table>
15 Settings in TROVIS-VIEW software

15.1 General

The TROVIS-VIEW software allows various smart SAMSON devices to be configured over a common operator interface. It consists of the operator interface, communication server, and the device-specific module. The software has a Windows Explorer® look and feel. The entire configuration of the positioner can be performed over the TROVIS-VIEW Configuration and Operator Interface.

The TROVIS-VIEW software is available in Internet (http://www.samson.de) in Services > Software > TROVIS-VIEW. The software can also be supplied on a CD-ROM on request.

Note: The following instructions include a description on the key functions of the TROVIS-VIEW software in conjunction with Type 3730-3 Positioner. Refer to the online help in the ? menu for a detailed description.

15.1.1 System requirements

Hardware requirements
- PC with Pentium II processor or equivalent (300 MHz or higher), 500 MHz recommended
- Serial interface and USB/RS-232 adapter
- Min. 96 MB RAM, 192 MB RAM recommended
- Min. 150 MB free hard disk space plus approx. 15 to 20 MB additional hard disk space per SAMSON module
- SVGA graphic card (min. 800 x 600)
- CD-ROM drive

Software requirements
- Operating system: Windows® 2000 (min. SP2), Windows® XP, Windows® Vista, Windows® 7
- Microsoft®.NET Framework Version 2.0 or higher (included on the installation CD-ROM)
- Internet browser: Microsoft® Internet Explorer
- Adobe® Reader®

Accessories
- Serial interface adapter, order no. 1400-7700
 (SAMSON SSP interface/RS-232 port of computer)
- Isolated USB interface adapter, order no. 1400-9740
 (SAMSON SSP interface/USB port of computer)
15.2 Installing TROVIS-VIEW software

1. Run setup.exe to install the program.

Installing the program from the downloaded ZIP file:
Download and unzip the ZIP file on your system before starting the installation.

Installing the program from a CD-ROM:
Once inserted, the CD-ROM starts the installation program automatically, depending on the configuration of the operating system. You do not need to run the setup.exe.

2. Follow the on-screen prompts and instructions of the installation program.
15.3 Starting TROVIS-VIEW and performing basic settings

You can perform the settings in TROVIS-VIEW either when the positioner is connected (online) to the computer or not connected (offline).

Note: When the positioner is not connected, the default settings appear on the operator interface or, alternatively, a stored TROVIS-VIEW file (*.tro) can be loaded and overwritten by selecting Open in the File menu.

1. Start TROVIS-VIEW. The operator interface appears with menubar and toolbar as well as various folders.

2. In **Options** menu, select **Language** to change the interface language.

3. Select **Customer data** in **Edit** menu to enter data relevant to the plant, e.g. project name, plant location, operator.

4. Select **Load Factory Defaults** in **Edit** menu if you want to load default settings (see code list in section 14) onto the operator interface.
5. Set the communications port for data communication. Proceed as follows:
 - Connect the port (RS-232 or USB) of the computer using the corresponding adapter to the SAMSON SSP interface of the positioner.
 - Select Communications in Options menu to open the server settings window. Click Server settings button.
 - Check Local connection and Automatically local connect boxes and click OK button to confirm server settings. The Communication window reappears.
 - Click Port settings button.
 - The settings window opens and State: not yet searched appears in the Automatic detection field. Click Start button. TROVIS-VIEW has found the positioner when State: Device found on COM appears.
 - Click on OK button twice to confirm settings.

6. If required, enter the type, date and selectable parameters which are used to automatically create the TROVIS-VIEW file name. The file name created in this way appears on saving a TROVIS-VIEW file (e.g. VIEW3_3730_3.tro) and can be adopted or altered.
Converting the software version

The TROVIS-VIEW software version must match the firmware of the positioner.

On exchanging data between the positioner and TROVIS-VIEW, the software automatically checks whether the versions are compatible and, if necessary, converts the data.

If you want to adapt the firmware version without exchanging any data, proceed as follows:

1. Select Convert in the File menu.
 A window with a drop-down list of all the available firmware versions appears.
2. Select the corresponding version.
3. Click on OK button to confirm the selected version.

15.4 Data transmission

Settings performed in the operator interface can be made both when the positioner is connected or not connected. When the positioner is connected, data uploaded from the positioner can be overwritten.

The default setting appear on the operator interface when no positioner is connected. A stored TROVIS-VIEW file (*.tro) can be loaded and overwritten by selecting Open in the File menu.

Connection to the positioner can also be made by clicking the icons on the top right in the device toolbar:

- Data from the positioner are uploaded and shown in the operator interface.
- The complete set of data is downloaded to the positioner from the operator interface.
 To transfer individual parameters, open the corresponding context-sensitive menu. Select Write to just download the selected parameter, refer to section 15.4.3.
- The positioner is in the online mode, indicated by the TROVIS-VIEW 3 logo on the top right in blue.
- The positioner is in the offline mode.

The listed functions can be activated in the Device menu.
Note: Perform the electrical connection as described in section 5.2 first before downloading any data to the positioner.

15.4.1 Offline operation (indirect data transmission)

In offline mode, there is no constant data communication between the computer and positioner. Communication must first be established to upload data from the positioner and download data to the positioner.

- **Downloading data to the positioner:** Select Download to the device in Device menu to transfer data to the positioner. The control task is implemented after data are downloaded from TROVIS-VIEW.
- **Uploading data from the positioner:** Select Upload from device in Device menu to transfer all the data from the positioner. Uploaded data are indicated in TROVIS-VIEW by the icon.

Note:
Data transmission can also be performed by clicking the icons in the device toolbar: click to download data from TROVIS-VIEW to the positioner and, click to upload data from the positioner and to display them in TROVIS-VIEW.

15.4.2 Online operation (direct data transmission)

The positioner and TROVIS-VIEW are constantly connected in online operation. Current configuration and operating data are uploaded from the positioner cyclically and displayed in TROVIS-VIEW. Likewise, any settings performed in TROVIS-VIEW are directly transferred to the positioner.

- **Activate online operation:** Select Online in Device menu to activate online mode. In online mode, on the device toolbar is animated.
- **Deactivate online operation:** Select Online in Device menu while the online mode is activated. The online mode is canceled.

Note: Alternatively, click on the device toolbar to activate and deactivate online operation.
Operational data graphs (Trend Viewer)
In online mode, process data (positioning value TRD, actual valve position and set point deviation \(e\)) are plotted in a graph over time. Select Trend Viewer in the View menu. You can modify the graphs, for example, by adding data points that should be recorded, or even remove data points. Right-click on the graph to save the analysis in a file.

Note: Drag and drop other data points in the Trend Viewer to add them.

15.4.3 Setting parameters
Properties of data points are indicated by icons on clicking on a folder:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>🗝️</td>
<td>Data cannot be changed</td>
</tr>
<tr>
<td>📋</td>
<td>Data can be changed</td>
</tr>
<tr>
<td>🌟</td>
<td>Data point can be executed</td>
</tr>
<tr>
<td>🎨</td>
<td>Data point is user-defined</td>
</tr>
<tr>
<td>❌</td>
<td>Mark to indicate status/error</td>
</tr>
<tr>
<td>🔔</td>
<td>Value has exceeded maximum limit</td>
</tr>
<tr>
<td>🔻</td>
<td>Value has fallen below minimum limit</td>
</tr>
</tbody>
</table>

Source of data:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>🎨</td>
<td>Value has been modified manually</td>
</tr>
<tr>
<td>🔄</td>
<td>Value has been uploaded from the positioner. In online mode, (X) in the icon indicates a value has been updated.</td>
</tr>
<tr>
<td>🇨녘</td>
<td>Value originates from a stored file</td>
</tr>
</tbody>
</table>

Parameters are data points whose settings can be changed. They are marked by the 🎨 icon. Their settings can be made either in online or offline mode.

1. Click on one of the folders in the left tree directory to view the parameter settings on the right. Place the cursor over a data point to open a tool tip providing more information on the parameter.
2. Double-click the required parameter to open a pop-up window to modify parameter setting.

Right-click the required parameter to open pop-up window to modify parameter settings:

- **Modify**: Opens pop-up window to modify parameter settings.
- **Read**: Uploads parameter value from device.
- **Write**: Downloads parameter value to device.
- **Default**: ... Resets parameter to default setting (setting in gray to indicate that the parameter value is the same as the default setting)
- **Min** … : Set parameter to the displayed minimum value.
- **Max** … : Set parameter to the displayed maximum value.

Note: Refer to the code list (section 14 on page 77 onwards) for descriptions of each parameter. The code number assigned to a parameter is listed in the Comment column in TROVIS-VIEW.

15.5 Initializing the positioner

Initializing the positioner is only possible in TROVIS-VIEW when the positioner has been attached properly to the control valve and has been connected (see sections 4 and 5). The positioner must be connected to the computer over the serial interface adapter.
NOTICE

During the initialization, the control valve moves through its entire travel/angle of rotation range. Therefore, do not start initialization while a process is running, but only during start-up, when all shut-off valves are closed.

Initialization using the Start Up Wizard

1. Start the Start Up Wizard by clicking the button.
2. Follow the on-screen prompts.

Manual initialization

1. Set the parameters in the *Positioner* folder (>(Start-up).

2. Enter the required initialization mode: Maximum range (MAX), nominal range (NOM), manually selected range (MAN), substitute calibration (SUB) in the *Positioner* folder (>Start-up-> Initialization).
3. Start initialization by right-clicking *Initialization* and selecting *Execute*. How long the initialization procedure lasts depends on the actuator transit time and may take a few minutes.
15.6 Status classification

Alarms are classified in the positioner with a status when an error occurs. States include “Maintenance alarm”, “Maintenance required”, “Maintenance demanded”, “Out of specification” and “No message”.

- **Maintenance alarm**
 The positioner cannot perform its control task due to a functional fault in the device or in one of its peripherals or an initialization has not yet been successfully completed.

- **Maintenance required**
 The positioner still performs its control task (with restrictions). A maintenance demand or above average wear has been determined. The wear tolerance will soon be exhausted or is reducing at a faster rate than expected. Maintenance is necessary in the medium term.

- **Maintenance demanded**
 The positioner still performs its control task (with restrictions). A maintenance demand or above average wear has been determined. The wear tolerance will soon be exhausted or is reducing at a faster rate than expected. Maintenance is necessary in the short term.

- **Out of specification**
 The positioner is operated out of specification.

- **No message**
 When this classification is active, it does not have any affect on the condensed state.

You can change the status classification in the Positioner folder (> Error control > Classification report).

Settings in TROVIS-VIEW software

Status classification of a single alarm TROVIS-VIEW3/DTM

<table>
<thead>
<tr>
<th>Status classification of a single alarm</th>
<th>TROVIS-VIEW3/DTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance alarm</td>
<td>red</td>
</tr>
<tr>
<td>Maintenance required/demanded</td>
<td>blue</td>
</tr>
<tr>
<td>Out of specification</td>
<td>yellow</td>
</tr>
<tr>
<td>No message</td>
<td>white</td>
</tr>
</tbody>
</table>
To provide a better overview, the classified alarms are summarized in a condensed state which is made up from a summary of all classified positioner alarms.

The condensed state appears in TROVIS-VIEW3 on the right-hand side of the info bar and in the Diagnosis folder (> Status messages). The Diagnosis folder (> Status messages) indicates which errors are responsible for setting the condensed state.

Note: Condensed state and status alarms are marked with in TROVIS-VIEW3 until they are read out.

The reading of the condensed state is as follows:

<table>
<thead>
<tr>
<th>Condensed state</th>
<th>TROVIS-VIEW3/DTM</th>
<th>Positioner display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance alarm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance required/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance demanded</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function check</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out of specification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No message</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Settings in TROVIS-VIEW software
16 Dimensions in mm

Fig 25a · NAMUR and direct attachment

Attachment acc. to IEC 60534-6

External position sensor

Pressure gauge bracket or connecting plate

Lever mm
S = 17
M = 50
L = 100
XL = 200

Output (38) Supply (9)

M20 x 1.5

External position sensor

Pressure gauge bracket or connecting plate

Lever mm
S = 17
M = 50
L = 100
XL = 200

Output (38) Supply (9)
Heavy-duty version

![Diagram of heavy-duty version]

Light version

![Diagram of light version]

Reversing amplifier

- Type 3710 (see drawing of heavy-duty version for dimensions)
- 1079-1118/1079-1119, no longer available (see drawing of light version for dimensions)

Fig. 25b · Attachment to rotary actuators VDI/VDE 3845 (Sept. 2010), level 1, size AA1 to AA4
16.1 Fixing levels according to VDI/VDE 3845 (September 2010)

Dimensions in mm

<table>
<thead>
<tr>
<th>Size</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Ød</th>
<th>M\textsubscript{min}</th>
<th>ØD*</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA0</td>
<td>50</td>
<td>25</td>
<td>15</td>
<td>5.5 for M5</td>
<td>66</td>
<td>50</td>
</tr>
<tr>
<td>AA1</td>
<td>80</td>
<td>30</td>
<td>20</td>
<td>5.5 for M5</td>
<td>96</td>
<td>50</td>
</tr>
<tr>
<td>AA2</td>
<td>80</td>
<td>30</td>
<td>30</td>
<td>5.5 for M5</td>
<td>96</td>
<td>50</td>
</tr>
<tr>
<td>AA3</td>
<td>130</td>
<td>30</td>
<td>30</td>
<td>5.5 for M5</td>
<td>146</td>
<td>50</td>
</tr>
<tr>
<td>AA4</td>
<td>130</td>
<td>30</td>
<td>50</td>
<td>5.5 for M5</td>
<td>146</td>
<td>50</td>
</tr>
<tr>
<td>AA5</td>
<td>200</td>
<td>50</td>
<td>80</td>
<td>6.5 for M6</td>
<td>220</td>
<td>50</td>
</tr>
</tbody>
</table>

* Flange type F05 according to DIN EN ISO 5211
17 Valve characteristic selection

The characteristics that can be selected in Code 20 are shown in following graph form.

Note: A characteristic can only be defined (user-defined characteristic) using a workstation/operating software (e.g. TROVIS-VIEW).

- **Linear** (select characteristic: 0)

 ![Linear graph](image)

- **Equal percentage** (select characteristic: 1)

 ![Equal percentage graph](image)

- **Rev. equal percentage** (select characteristic: 2)

 ![Rev. equal percentage graph](image)
Test report for information of the Applicant

Testing of the Degree of Protection on enclosures of Type 3730 and Type 3731 Positioners

This test report contains the result of a single investigation carried out on the product submitted. A sample of this product was tested to the accordance with the thereafter listed standards resp. parts of standards.

The test report does not entitle to use a VDE Certification mark and the "GS - geprüfte Sicherheit (test safety)" and does not refer to all VDE specifications applicable to the tested product.

This report may only be passed to a third party in its complete wording including this preamble and the date of issue.

Any publication or reproduction requires the prior written approval of the VDE Testing and Certification Institute.

1 Assignment

The samples described in 2 below were tested for compliance with the IP 66 degree of protection.

2 Samples

2.1 Type 3730 Positioner

2.2 Type 3731 Positioner

3 Basis of assessment

DIN EN 60529/VDE 0470 Part 1:2000-09
Degree of protection provided by enclosures (IP Code)
German version EN 60529:1999+A1:2000

4 Execution of the tests

The dust test had already been carried out on the Type 3730 Positioner under the reference number: 479000891-0003/227549 and on the Type 3731 Positioner under the reference number: 479000891-0003/5189 with section as per category 1 at the connecting enclosures of the positioners and isolated values. The under pressure was 2 kPa and the test lasted 8 hours.

5 Test results

The testing of the samples described in 2 above yielded the following results:

Protecting against access to hazardous parts and against ingress of solid foreign objects according to DIN EN 60529/VDE 0470 Part 1:2000-09
IP6X satisfied

Protecting against ingress of water according to DIN EN 60529/VDE 0470 Part 1:2000-09
IPXS satisfied

The positioner enclosures in the versions submitted meet the requirements of IP 66 degree of protection.

There was no ingress of either dust or water.

VDE-Prüf- und Zertifizierungsinstitut
Fachgebiet FG 33

(Signature)

Gerhard Biedl
IECEx Certificate of Conformity

INTERNATIONAL ELECTROTECHNICAL COMMISSION
IEC Certification Scheme for Explosive Atmospheres
for rules and details of the IECEx Scheme visit www.iecex.com

Certificate No.: IECEx PTRB0500008
Issue No.: 0
Status: Current
Date of Issue: 2005-03-21
Page 1 of 2

Applicant: SANSOR, AG Mess- und Regeltechnik
Waltershainstrasse 3
D-60314 Frankfurt am Main
Germany

Electrical Apparatus: HART capable positioner type: 3730-HL
Optica: Positioner

Type of Protection: General, Non-ignition, Intrinsically Safe; Protection by Enclosure

Marking: Ex ia IIC T7/GF
IP 54 and IP 65 T 80 °C

Approval for Positioner: Dr.-Ing. Ulrich Johannsmeyer
Proven: Department Head "Intrinsically Safe and Safety of Systems"

Signature: (for positioner)
Date:

1. This certificate and schedule may only be reproduced in full.
2. This certificate is not transferable and remains the property of the issuing body.
3. The Status and authenticity of this certificate may be verified by visiting the Official IECEx Website.

Certificate issued by:
Physikalisch-Technische Bundesanstalt (PTB)
Bundesallee 100
38116 Braunschweig
Germany

IECEx Certificate of Conformity

Certificate No.: IECEx PTRB0500008
Date of Issue: 2005-03-21
Issue No.: 0
Page 2 of 3

Manufacturer: SANSOR, AG Mess- und Regeltechnik
Waltershainstrasse 3
D-60314 Frankfurt am Main
Germany

Manufacturing location(s):

This certificate is issued as verification that a sample(s), representative of production, was assessed and tested and found to comply with the IEC standard listed below and that the manufacturer is qualified to produce the products covered by this certificate, as assessed and found to comply with the IECEx Quality system requirements. This certificate is granted subject to the conditions as set out in IECEx Scheme Rules, IECEx 02 and Operational Documents as amended.

STANDARDS:
The electrical apparatus and any acceptable variations to it, specified in the schedule of this certificate and the identified documents, was found to comply with the following standards:

IEC 60079-0 : 2000 Electrical apparatus for explosive gas atmospheres - Part 0: General requirements Edition: 2.1

The Certificate does not indicate compliance with electrical safety and performance requirements other than those expressly indicated in the dimensions listed above.

TEST & ASSESSMENT REPORTS:
A sample of the equipment listed has been examined and the examination and test requirements as indicated in

IECEx ATR
File Reference:
DEIPTRB050005
R022174
IECEx Certificate of Conformity

Certificate No.: IECEx PTR 05.0008
Date of Issue: 2005-02-21

Schedule

EQUIPMENT:
Equipment and systems covered by this certificate are as follows:

General description: The Model 3700-31 HART®-capable Positioner is a single- or double-acting positioner with communication capability intended for attachment to pneumatic control valves or rotary actuators. The Positioner is of the self-balancing type and adopts itself automatically to the attached valve or actuator respectively. The Positioner serves for matching valve stem positions (controlled variable z) with the control signal (reference variable W) in the 4-20mA range. Nominal travel of 3.8 to 200mm are possible with linear actuators, or angles of rotation of 24° to 100° with rotary actuators. Features: Simple attachment to current linear and rotary actuators with interface for 4-20mA signal attachment: NAMUR-18, attachment to Endress+Hauser's type valve acc. to IEC 60934-6-1. Any mounting position of the positioner.

Options: Position indicator, software proximity switches, inductive proximity switch, internal testing function, fail alarm output, external displacement transducer and serial interface. In the ex version the fail alarm output, the software proximity switches and the inductive proximity switch are analysed by a NAMUR-switching amplifier according to EN 60077.

CONDITIONS OF CERTIFICATION: 1.0
(1) According to the Directive 94/9/EC, this EC TYPE EXAMINATION CERTIFICATE relates only to the design and construction of the specified equipment. If applicable, further requirements of this Directive apply to the manufacture and supply of the equipment.

(12) The marking of the equipment shall include the following:

EX
II G Ex ia IIC T6

Zertifizierungsstelle Explosionsschutz
Braunschweig, 02 December 2002
By order
(Signature) (Seal)
Dr. Ing. U. Johannsmeier
Regierungsdirektor
Schedule

EC TYPE EXAMINATION CERTIFICATE No. PTB 02 ATEX 2174

Description of Equipment

The HART® capable positioner Type 3730-31 is a single- or double-acting positioner with communication capability intended for attachment to all current linear or rotary actuators. It serves for adjusting valve stem position to the control signal.

In the 3730-31... version communication is according to the SSP (SAMSON Serial Interface Protocol) and the HART protocol.

The HART® capable positioner Type 3730-31 is a passive two-terminal network which may be connected to any certified intrinsically safe circuit, provided the permissible maximum values of UI, li and Pi are not exceeded.

For instrument air non-combustible media are used.

The device is intended for use inside and outside of hazardous areas.

The correlation between temperature classification and permissible ambient temperature ranges are shown in the table below:

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Permissible ambient temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>-40 °C ... 60 °C</td>
</tr>
<tr>
<td>T5</td>
<td>-40 °C ... 70 °C</td>
</tr>
<tr>
<td>T4</td>
<td>-40 °C ... 80 °C</td>
</tr>
</tbody>
</table>

Electrical data

Signal circuit (terminals 11/12)

Type of protection: Intrinsic safety EEx ia IIC

only for connection to a certified intrinsically safe circuit

Maximum values:

\[
\begin{align*}
U & = 28 \text{ V} \\
li & = 115 \text{ mA} \\
P_i & = 1 \text{ W} \\
Cs & = 5.3 \text{ nF, } Li = \text{ negligible}
\end{align*}
\]

Software limit switches (terminals 41/42, 51/52)

Type of protection: Intrinsic safety EEx ia IIC

only for connection to a certified intrinsically safe circuit

Maximum values:

\[
\begin{align*}
U_i & = 20 \text{ V} \\
li & = 60 \text{ mA} \\
P_i & = 250 \text{ mW} \\
Cs & = 5.3 \text{ nF, } Li = \text{ negligible}
\end{align*}
\]

Limit switch, inductive (terminals 41/42)

Type of protection: Intrinsic safety EEx ia IIC

only for connection to a certified intrinsically safe circuit

Maximum values:

\[
\begin{align*}
U_i & = 16 \text{ V} \\
li & = 52 \text{ mA} \\
P_i & = 169 \text{ mW} \\
Cs & = 60 \text{ nF, } Li = 200 \mu\text{H, or}
\end{align*}
\]

\[
\begin{align*}
U_i & = 16 \text{ V} \\
li & = 25 \text{ mA} \\
P_i & = 64 \text{ mW} \\
Cs & = 60 \text{ nF, } Li = 200 \mu\text{H}
\end{align*}
\]

The correlation between temperature classification, permissible ambient temperature ranges and maximum short-circuit current for analysers is shown in the table below:

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Permissible ambient temperature range</th>
<th>Ie / Po</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>-40 °C ... 45 °C</td>
<td>52mA/169mW</td>
</tr>
<tr>
<td>T5</td>
<td>-40 °C ... 60 °C</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>-40 °C ... 75 °C</td>
<td></td>
</tr>
<tr>
<td>T6</td>
<td>-40 °C ... 60 °C</td>
<td>25mA/64mW</td>
</tr>
<tr>
<td>T5</td>
<td>-40 °C ... 80 °C</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>-40 °C ... 80 °C</td>
<td></td>
</tr>
</tbody>
</table>
Fault alarm output (terminals 83/84)

Type of protection: Intrinsic safety Ex ia IIC
only for connection to a certified intrinsically safe circuit

Maximum values:
\[U_i = 20 \text{ V} \]
\[I_i = 60 \text{ mA} \]
\[P = 250 \text{ mW} \]
\[C_i = 5.3 \text{ nF}, U_i = \text{negligible} \]

Serial interface BU

Type of protection: Intrinsic safety Ex ia IIC

Maximum values:
\[U_o = 7.88 \text{ V} \]
\[I_o = 61.8 \text{ mA} \]
\[P_e = 120 \text{ mW}, \text{ Linear characteristic} \]
\[C_o = 0.65 \mu \text{F}, L_o = 10 \text{ mH} \]
only for connection to a certified intrinsically safe circuit

\[U_i = 16 \text{ V} \]
\[I_i = 25 \text{ mA} \]
\[P_i = 64 \text{ mW} \]
\[C_i = \text{negligible}, \]
\[L_i = \text{negligible} \]

For interconnecting the rules for interconnecting intrinsically safe circuit shall be complied with.

External position sensor (analog p0b, p0c, p10, p11)

Type of protection: Intrinsic safety Ex ia IIC

Maximum values:
\[U_o = 7.88 \text{ V} \]
\[I_o = 61 \text{ mA} \]
\[P_e = 120 \text{ mW}, \text{ Linear characteristic} \]
\[C_o = 0.66 \mu \text{F}, L_o = 10 \text{ mH} \]
\[C_i = 730 \text{ nF}, U_i = 370 \mu \text{F} \]
Translation

Addendum No.: 1

In compliance with Directive 94/9/EC Annex III Clause 6 to the EC Type Examination Certificate PTB 02 ATEX 2174

Equipment: Model 3730-31... HART-capable Positioner

Marking: Ex II 2 G Ex ia IIC T6

Manufacturer: SAMSON AG

Address: Weismüllerstr. 3, D-60314 Frankfurt, Germany

Description of the additions and modifications

In future the Model 3730-31... HART-capable Positioner is permitted to be manufactured also in compliance with the documents listed below:

The module board will be modified and the optional "Forced Venting Function" will be added. The electrical data will be supplemented as follows:

Electrical data

Forced venting function (terminal 81/82) safe

Type of protection: Intrinsic safety Ex ia IIC
only for connection to a certified intrinsically safe circuit

Maximum values:
U_i = 28 V
I_i = 115 mA
P_i = 500 mW
U = negligible
C_i = 5.3 nF

PTB

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin
Addendum No. 1 to the EX Type Examination Certificate PTB 02 ATEX 2174
All the other electrical data and particulars specified in the EC Type Examination Certificate apply unchanged also to this Addendum No. 1.

Test report: PTB EX 03-23171

Zertifizierungsstelle Explosionsschutz
Braunschweig, 18 June 2002

(Signature) (Seal)

Dr. Ing. U. Johannsmeyer
Regierungsdirektor
ADDITION No.: 2

in compliance with Directive 94/9/EC Annex III Clause 6 to the EC Type Examination Certificate PTB 02 ATEX 2174

Equipment: Model 3730-31... HART capable Positioner
Marking: Ex II 2G Ex ia IIC T6
Manufacturer: SAMSON AG
Address: Weismüllerstr. 3, D-60314 Frankfurt, Germany

Description of the additions and modifications

The Model 3731-31... HART capable Positioner is permitted to be manufactured in future also in compliance with the documents specified in the attached test report PTB Ex 04-23430.

Attachment to pneumatic control valves or butterfly valves is either directly to the Series 3777 Actuators or by means of NAMUR adapter plates to actuators of conventional design.

The modifications relate to the internal and external design.

a) The Model 3730-31... HART capable Positioner satisfies the requirements of EN 50281-1-1:1998 relating to electrical apparatus with protection provided by enclosures. According to this standard, the positioner shall be provided in addition with the following marking:

Ex II 2D IP 65 T 80 °C

b) The circuitry of the multifunction printed circuit board will be modified and the option "position indicator" will be added (version 3730-1.1). The electrical data will be supplemented as follows:

Electrical data

Signal circuit
Type of protection: Intrinsic safety Ex ia IIC
Only for connection to a certified intrinsically safe circuit

Maximum values:
U = 78 V
I = 115 mA
P = 1 W

Li negligible
C = 35 nF

Version 3730-1.1

Position indicator
Type of protection: Intrinsic safety Ex ia IIC
(terminal 31/32)
Only for connection to a certified intrinsically safe circuit

Maximum values:
U = 28 V
I = 115 mA
P = 1 W

Li negligible
C = 5.3 nF

All the other electrical data and information contained in the EC Type Examination Certificate apply unchanged also to this Addition No. 2.

Test report: PTB EX 04-23430

Zertifizierungsstelle Explosionsschutz Braunschweig, 16 February 2004

[Signature] [Seal]

Dr. Ing. U. Gerlach
TRANSLATION

ADDENDUM No. 3

According to Directive 94/9/EC Annex III Clause 6 to the EC Type Examination Certificate PTB 04 ATEX 2174

Equipment: Model 3730-31—HART Capable Positioner:

Marking: Ex H2 G EEx ia II Y 6 or Ex H2 D IP 65 T 90 °C resp.

Manufacturer: SAMSON AG Mess- und Regeltechnik
Address: Weisstrasse 1
60314 Frankfurt am Main, Germany

Description of the additions and modifications

The Model 3730 - 31 — HART Capable Positioner is permitted to be manufactured in the future also in compliance with the documents specified in the test reports included in the test report.

The technical data are modified as follows:

Forced ventilation
(terminals B1/B2)

Type of protection: Intrinsic Safety EIEx ia II
only for connection to a certified intrinsically safe circuit

Maximum values:
Ii = 28 V
Ii = 115 mA
Ci = 5.3 mF
Li = negligible

Version 3730-1.....1
(binary sensor)

Type of protection: Intrinsic Safety EIEx ia II
only for connection to a certified intrinsically safe circuit

Maximum values:
Ii = 30 V
Ii = 100 mA
Ci = 56.3 mF
Li = negligible

PB 8384-3
EN 127
4th ADDENDUM
according to Directive 94/9/EC, Annex III, item 6

to the EC Type Examination Certificate PTB 02 ATEX 2174

Device: Type 3730.31, HART-capable Positioner
Marking: Ex II 2G Ex ia IIC T6 or Ex ia IIC T6
Manufacturer: SAMSON AG Mess- und Regeltechnik
Address: Weismüllerstraße 3, 60314 Frankfurt am Main, Germany

Description of additions and modifications

In the future, the Type 3730.31, HART-capable Positioner may also be manufactured according to the certification document listed in the test report.
The permissible ambient temperature range is extended.
The editions of standards are updated.

The following table lists the relation between the temperature classes and the permissible ambient temperature ranges:

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Permissible ambient temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>-55 °C to 60 °C</td>
</tr>
<tr>
<td>T3</td>
<td>-55 °C to 70 °C</td>
</tr>
<tr>
<td>T4</td>
<td>-55 °C to 80 °C</td>
</tr>
</tbody>
</table>

Electric data

Signal current circuit (terminals 11/32) in type of protection Ex ia IIC
For connection to a certified intrinsically safe current circuit only.
Max. values:

U_i	28 V
I_i	115 mA
P_i	1 W
I_i	negligible
C_i	35 mS

Version 3730-1-1 in type of protection Ex ia IIC (terminals 31/32)
For connection to a certified intrinsically safe current circuit only.
Max. values:

U_i	28 V
I_i	115 mA
C_i	35 mS

Version 3730-1-1 in type of protection Ex ia IIC (binary sensor) (terminals 31/32)
For connection to a certified intrinsically safe current circuit only.
Max. values:

U_i	28 V
I_i	115 mA
C_i	35 mS

Software limit switches (terminals 41/42, 51/52) in type of protection Ex ia IIC
For connection to a certified intrinsically safe current circuit only.
Max. values:

U_i	28 V
I_i	115 mA
C_i	35 mS

EC type examination certificates without signature are not valid.
This EC type examination certificate may only be reproduced without changes.
Any copy or modifications are to be approved by Physikalisch-Technische Bundesanstalt.
4th Addendum to the EC Type Examination Certificate PTB 02 ATEX 2174

Inductive limit switch, ... in type of protection: Ex i a HIC
(terminals 41/42)

For connection to a certified intrinsically safe current circuit only

Max. values:

\[
\begin{align*}
U_i &= 16 \text{ V} \\
h_i &= 25 \text{ mA} \\
P_i &= 560 \text{ mW} \\
I_i &= 200 \text{ \mu A} \\
C_i &= 60 \text{ \mu F}
\end{align*}
\]

or

\[
\begin{align*}
U_i &= 16 \text{ V} \\
h_i &= 25 \text{ mA} \\
P_i &= 64 \text{ mW} \\
I_i &= 200 \text{ \mu A} \\
C_i &= 60 \text{ \mu F}
\end{align*}
\]

The following table lists the relation between the temperature classes, the permissible ambient temperature ranges, the max. short-circuit currents and the max. capacity for evaluators:

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Permissible ambient temperature range</th>
<th>Max. short-circuit current</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>Up to 45 °C</td>
<td>52 mA/169 mW</td>
</tr>
<tr>
<td>T5</td>
<td>55 °C to 60 °C</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>Up to 75 °C</td>
<td></td>
</tr>
<tr>
<td>T6</td>
<td>Up to 60 °C</td>
<td>25 mA/64 mW</td>
</tr>
<tr>
<td>T5</td>
<td>-55 °C to 80 °C</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>Up to 80 °C</td>
<td></td>
</tr>
</tbody>
</table>

Forced venting, ... in type of protection: Ex i a HIC
(terminals 31/32)

For connection to a certified intrinsically safe current circuit only

Max. values:

\[
\begin{align*}
U_i &= 28 \text{ V} \\
h_i &= 115 \text{ mA} \\
I_i &= \text{negligible} \\
C_i &= 5.3 \text{ \mu F}
\end{align*}
\]

Serial interface, .. in type of protection: Ex i a HIC
(programming socket BU)

Max. values:

\[
\begin{align*}
U_i &= 20 \text{ V} \\
h_i &= 60 \text{ mA} \\
P_i &= 250 \text{ mW} \\
I_i &= \text{negligible} \\
C_i &= 5.2 \text{ \mu F}
\end{align*}
\]

When interconnecting, the rules for interconnecting intrinsically safe current circuits are to be observed.

External position sensor, .. in type of protection: Ex i a HIC
(noting PCB, pins p9, p10, p11)

Max. values:

\[
\begin{align*}
U_i &= 7.88 \text{ V} \\
h_i &= 61 \text{ mA} \\
P_i &= 120 \text{ mW} \\
I_i &= \text{negligible} \\
C_i &= \text{negligible}
\end{align*}
\]

Linear characteristic

\[
I_i = 10 \text{ mA}
\]

or

For connection to a certified intrinsically safe current circuit only

Max. values:

\[
\begin{align*}
U_i &= 16 \text{ V} \\
h_i &= 25 \text{ mA} \\
P_i &= 64 \text{ mW} \\
I_i &= \text{negligible} \\
C_i &= \text{negligible}
\end{align*}
\]
4th Addendum to the EU Type Examination Certificate PTB 02 ATEX 2174

$L_0 = 10 \text{ cmH}_2O$
$C_0 = 0.66 \mu F$
$L_1 = 370 \mu F$
$C_1 = 730 \mu F$

All other specifications for manufacture and operation mentioned in the statement of conformity are not affected by this addendum and remain valid without changes.

Referenced standards

Test report
P18 Ex 08-2027

Certification Body for Explosion Protection
Braunschweig, 10 December 2008

[Signature]

Johannmeyer, staige Physikalisch-Technische Bundesanstalt 56

Dr. Ing. L. Johannmeyer
Director and Professor
TRANSLATION

Statement of Conformity

(3) EC Type Examination Certificate Number

PTB 03 ATEX 2180 X

(4) Equipment: Model 3720-38 HART-capable Positioner

(5) Manufacturer: SAMSON AG Mess- und Regeltechnik

(6) Address: Walsmühlerstr. 3, 60314 Frankfurt am Main, Germany

(7) The equipment and any acceptable variation thereof are specified in the schedule to this certificate and the documents referred to therein.

(8) The Physikalisch-Technische Bundesanstalt, notified body number 0102 according to Article 9 of the Council Directive 94/9/EC of 23 March 1994, certifies that this equipment has been found to comply with the essential health and safety requirements relating to the design and construction of equipment and protective systems intended for use in potentially explosive atmospheres specified in Annex II to the Directive.

The examination and test results are recorded in confidential report.

PTB Ex 03-23301

(9) The essential health and safety requirements are satisfied by compliance with EN 50021: 1999

(10) If the sign "X" is placed after the certificate number, it indicates that the equipment is subject to special conditions for safe use as specified in the schedule to this certificate.

(11) In compliance with the Directive 94/9/EC this Statement of Conformity relates only to the design and construction of the equipment specified. Further requirements of this Directive apply to manufacture and marketing of this equipment.

(12) The marking of the equipment shall include the following:

II 3 G Ex nA IIC T6

Zertifizierungsstelle Explosionsschutz
By order

(Signature) (Seal)

Dr. Ing. U. Johannsmeyer
Regierungsdirktor
Schedule

Statement of Conformity PTB 03 ATEX 2180 X

Description of Equipment

The Model 3730-38 . . . HART-capable Positioner is a single- or double-acting positioner with communication capability intended for attachment, to any current linear or rotary actuator. It serves for translating control signals into valve stem positions.

The Model 3730-38 . . . version is capable of communicating according to the SSP and the HART protocol.

For instrument air non-combustible media are used.

The device is intended for use inside and outside of hazardous locations.

The correlation between temperature classification and permissible temperature ranges is shown in the table below.

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Permissible ambient temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>-40°C ... 60°C</td>
</tr>
<tr>
<td>T5</td>
<td>-40°C ... 70°C</td>
</tr>
<tr>
<td>T4</td>
<td>-40°C ... 80°C</td>
</tr>
</tbody>
</table>

Electrical data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Type of protection EEx eA II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal circuit (terminals 11/12)</td>
<td>Type of protection EEx eA II</td>
</tr>
<tr>
<td>Software limit switch (terminals 41/42, 51/52)</td>
<td>Type of protection EEx eA II</td>
</tr>
<tr>
<td>Inductive limit switch (terminals 41/42)</td>
<td>Type of protection EEx eA II</td>
</tr>
<tr>
<td>Forced venting function (terminals 81/82)</td>
<td>Type of protection EEx eA II</td>
</tr>
<tr>
<td>Fault alarm output (terminals 83/84)</td>
<td>Type of protection EEx eA II</td>
</tr>
<tr>
<td>Serial interface adapter</td>
<td>Type of protection EEx eA II</td>
</tr>
<tr>
<td>External position sensor</td>
<td>Type of protection EEx eA II</td>
</tr>
</tbody>
</table>

By order

(Signature) (seal)

Dr. Ing. U. Johannsmeyer
Regierungsdirektor

Basis health and safety requirements

Are satisfied by compliance with the standard specified above.
TRANSLATION

ADDITION N o.: 1

to the Statement of conformity PTB 03 ATEX 2180 X

Equipment: Model 3730-38. HART capable Positioner

Marking: II 3G Ex nA II T6

Manufacturer: SAMSON AG, Mess- und Regeltechnik

Address: Wasserhüllerstr. 3, D-60314 Frankfurt, Germany

Description of the additions and modifications

The Model 3730-38. HART capable Positioner is permitted in future to be also to energy-limited circuits with type of protection Ex nL IIC T6.

The correlation between temperature classification and permissible temperature ranges is shown in the table below:

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Permissible ambient temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>-40°C ... 60°C</td>
</tr>
<tr>
<td>T5</td>
<td>-40°C ... 70°C</td>
</tr>
<tr>
<td>T4</td>
<td>-40°C ... 80°C</td>
</tr>
</tbody>
</table>

The electrical data will be supplemented as follows:

Electrical data

<table>
<thead>
<tr>
<th>Signal circuit [terminals 11/12]</th>
<th>Type of protection Ex nA II or Ex nL IIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum values</td>
</tr>
<tr>
<td></td>
<td>Ua = 30 V</td>
</tr>
<tr>
<td></td>
<td>ia = 100 mA</td>
</tr>
<tr>
<td></td>
<td>Pi = 1 W</td>
</tr>
</tbody>
</table>

The correlation between temperature classification, permissible ambient temperature ranges, maximum short-circuit current and maximum power for evaluation instruments is shown in the table below:

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Permissible ambient temperature range</th>
<th>Ie / Po</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>45°C</td>
<td></td>
</tr>
<tr>
<td>T5</td>
<td>-45°C ... 60°C</td>
<td>52mA/169mW</td>
</tr>
<tr>
<td>T4</td>
<td>75°C</td>
<td></td>
</tr>
<tr>
<td>T6</td>
<td>60°C</td>
<td></td>
</tr>
<tr>
<td>T5</td>
<td>-40°C ... 80°C</td>
<td>25mA/64mW</td>
</tr>
<tr>
<td>T4</td>
<td>80°C</td>
<td></td>
</tr>
</tbody>
</table>
Limit switch (software)
(terminals 41/42, 51/52)

Type of protection: Ex.nA II or Ex. nL IIC

Maximum values:
- $U_i = 20 \text{ V}$
- $I_i = 60 \text{ mA}$
- $P_i = 400 \text{ mW}$
- $C_i = 5.3 \text{ nF}$
- $L_i = \text{negligible}$

Forced venting function
(terminals 81/82)

Type of protection: Ex.nA II or Ex. nL IIC

Maximum values:
- $U_i = 20 \text{ V}$
- $I_i = 100 \text{ mA}$
- $C_i = 5.3 \text{ nF}$
- $L_i = \text{negligible}$

Fault alarm output
(terminals 83/84)

Type of protection: Ex.nA II or Ex. nL IIC

Maximum values:
- $U_i = 20 \text{ V}$
- $I_i = 60 \text{ mA}$
- $P_i = 400 \text{ mW}$
- $C_i = 5.3 \text{ nF}$
- $L_i = \text{negligible}$

Serial interface

Type of protection: Ex.nA II or Ex. nL IIC

Maximum values (active):
- $U_i = 7.88 \text{ V}$
- $I_i = 62 \text{ mA}$
- $P_i = 120 \text{ mW}$
- $C_i = 0.62 \mu\text{F}$
- $L_i = 10 \text{ nH}$

The equipment is mounted in a metallic enclosure which ensures at least degree of protection IP 54.

The marking of the Model 3730-38 HART capable positioner is complemented as follows:

Ex
II 3 G ExnA II T6 or II 3 G ExnL IIC T6
II 3 DIP 54 T 80 °C or II 3 DIP 65 T 80 °C

The special conditions are complemented as follows:

All the other data apply unaltered also to this Addendum No. 1

Test report: PTB Ex-05-25053

Zertifizierungsstelle Explosionsschutz
Braunschweig, 26 April 2005

[Signature]
(Seal)
Dr. Ing. U. Johannsmeyer
Régierungsdirektor

Statement of Conformity:
This Statement of Conformity may be reproduced only in its entirety and without any changes, schedule
Excerpts or changes shall require the prior approval of the Physikalisch-Technische Bundesanstalt.
TRANSLATION

ADDITION No. 2

to the Statement of Conformity PTB 83 ATEx 2180 X

Equipment: Model 3730-3R; HART Capable Positioner

Marking:

\[
\text{II 3 G Ex n A T6 or II 3 G Ex n L H C T6 or II 3 D IP 54 T5 80 °C or II 3 D IP 65 T5 80 °C.}
\]

Manufacturer: SAMSON AG Mess- und Regeltechnik

Address: Weinstiehlerstrasse 3
60314 Frankfurt am Main, Germany

Description of the additions and modifications:

The Model 3730 – 3R, HART Capable Positioner is permitted to be manufactured in the future also in compliance with the documents specified in the test records included in the test report.

The technical data are modified as follows:

Version 3730-3R-1

<table>
<thead>
<tr>
<th>(binary-sensor)</th>
<th>Type of protection II 3 Ex n A II or II 3 Ex n L H C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary input</td>
<td>Maximum values:</td>
</tr>
<tr>
<td>(terminals 21/32)</td>
<td>(U_i = 30 , V)</td>
</tr>
<tr>
<td></td>
<td>(I_i = 100 , mA)</td>
</tr>
<tr>
<td></td>
<td>(C_i = 56.3 \mu F)</td>
</tr>
<tr>
<td></td>
<td>(I_i) negligible</td>
</tr>
</tbody>
</table>

Version 3730-3R-1

<table>
<thead>
<tr>
<th>(vibration-sensor)</th>
<th>Type of protection II 3 Ex n A II or II 3 Ex n L H C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor connection</td>
<td>Maximum values:</td>
</tr>
<tr>
<td>(terminals 31/32)</td>
<td>(U_i = 28 , V)</td>
</tr>
<tr>
<td></td>
<td>(I_i = 115 , mA)</td>
</tr>
<tr>
<td></td>
<td>(C_i = 5.3 \mu F)</td>
</tr>
<tr>
<td></td>
<td>(I_i) negligible</td>
</tr>
</tbody>
</table>

Addendum No. 2 to the Statement of Conformity PTB 83 ATEx 2180 X

The special conditions and all the other particulars shall apply also to this Addendum No. 2.

Test report: PTB Ex 07-27064

Zertifikatsstelle Explosionsabsatz

By order

(Braunschweig, 10 September 2007)

(Signature) (Seal)

Dr. Ing. U. Johannsmeyer
Director and Professor
TRANSLATION

8th ADDED ADDENDA
to Statement of Conformity PTB 03 ATEX 2180 X

Device:
Type 3730-38 - HART*•-capable Positioner

Marking: 2) 11.3G Ex nA II T6 or 2) 11.3D Ex ib IIC 21 1P 65 180 °C

Manufacturer: SAMSON AG Mess- und Regeltechnik
Address: Westmühlenstraße 3, 60314 Frankfurt am Main, Germany

Description of additions and modif.ifications
In the future, the Type 3730-38, HART*-capable Positioner may also be manufactured according to the certification documents listed in the test report.
The permissible ambient temperature range is extended.
The editions of standards are updated.

The following table lists the relation between the temperature classes and the permissible ambient temperature ranges:

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Permissible ambient temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td>T8</td>
<td>−55 °C to 60 °C</td>
</tr>
<tr>
<td>T5</td>
<td>−55 °C to 70 °C</td>
</tr>
<tr>
<td>T4</td>
<td>−55 °C to 80 °C</td>
</tr>
</tbody>
</table>

Electric data
Signal current circuit .. in type of protection: Ex nA II
(or Ex nIIC)
Max. values during operation:
U0 = 30 V
I0 = 100 mA
P0 = 3.5 W
C0 = negligible

Version 3730-8.1
Position indicator .. in type of protection: Ex nA II
(or Ex nIIC)
Max. values during operation:
U0 = 12 V
I0 = 112 mA
L = negligible

The following table lists the relation between the temperature classes, the permissible ambient temperature ranges, the max. short-circuit currents and the max. capacity for evaluations:

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Permissible ambient temperature range</th>
<th>Ie/P0</th>
</tr>
</thead>
<tbody>
<tr>
<td>T8</td>
<td>Up to 45 °C</td>
<td>57 mA/110 mW</td>
</tr>
<tr>
<td>T5</td>
<td>Up to 60 °C</td>
<td>52 mA/110 mW</td>
</tr>
<tr>
<td>T4</td>
<td>Up to 75 °C</td>
<td>25 mA/64 mW</td>
</tr>
<tr>
<td>T6</td>
<td>Up to 80 °C</td>
<td>25 mA/64 mW</td>
</tr>
<tr>
<td>T5</td>
<td>−55 °C to 80 °C</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>−55 °C to 80 °C</td>
<td></td>
</tr>
</tbody>
</table>
Software limit switches (terminals 41/42, 51/52)

<table>
<thead>
<tr>
<th>in type of protection</th>
<th>Ex n A II</th>
</tr>
</thead>
<tbody>
<tr>
<td>or</td>
<td>Ex n I I C</td>
</tr>
</tbody>
</table>

Max. values during operation:

<table>
<thead>
<tr>
<th>U1</th>
<th>20 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>60 mA</td>
</tr>
<tr>
<td>Pn</td>
<td>400 mW</td>
</tr>
<tr>
<td>C1</td>
<td>5.3 nF</td>
</tr>
<tr>
<td>L1</td>
<td>negligible</td>
</tr>
</tbody>
</table>

Forced venting (terminals 81/82)

<table>
<thead>
<tr>
<th>in type of protection</th>
<th>Ex n A II</th>
</tr>
</thead>
<tbody>
<tr>
<td>or</td>
<td>Ex n I I C</td>
</tr>
</tbody>
</table>

Max. values during operation:

<table>
<thead>
<tr>
<th>U1</th>
<th>30 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>100 mA</td>
</tr>
<tr>
<td>C1</td>
<td>5.3 nF</td>
</tr>
<tr>
<td>L1</td>
<td>negligible</td>
</tr>
</tbody>
</table>

Fault indication output (terminals B3/84)

<table>
<thead>
<tr>
<th>in type of protection</th>
<th>Ex n A II</th>
</tr>
</thead>
<tbody>
<tr>
<td>or</td>
<td>Ex n I I C</td>
</tr>
</tbody>
</table>

Max. values during operation:

<table>
<thead>
<tr>
<th>U1</th>
<th>20 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>60 mA</td>
</tr>
<tr>
<td>Pn</td>
<td>400 mW</td>
</tr>
<tr>
<td>C1</td>
<td>5.3 nF</td>
</tr>
<tr>
<td>L1</td>
<td>negligible</td>
</tr>
</tbody>
</table>

Serial interface (programming socket UK)

<table>
<thead>
<tr>
<th>in type of protection</th>
<th>Ex n A II</th>
</tr>
</thead>
<tbody>
<tr>
<td>or</td>
<td>Ex n I I C</td>
</tr>
</tbody>
</table>

Max. values during operation (active):

<table>
<thead>
<tr>
<th>U1</th>
<th>7.88 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>62 mA</td>
</tr>
<tr>
<td>Pn</td>
<td>170 mW</td>
</tr>
<tr>
<td>C1</td>
<td>0.65 nF</td>
</tr>
<tr>
<td>L1</td>
<td>10 mH</td>
</tr>
</tbody>
</table>

or

Max. values during operation (passive):

<table>
<thead>
<tr>
<th>U1</th>
<th>20 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>25 mA</td>
</tr>
<tr>
<td>Pn</td>
<td>64 mW</td>
</tr>
<tr>
<td>L1</td>
<td>negligible</td>
</tr>
<tr>
<td>C1</td>
<td>negligible</td>
</tr>
</tbody>
</table>

All other specifications mentioned in the statement of conformity are not affected by this addition and remain valid without changes.

Special conditions

If the signal current circuit is connected to a current circuit in type of protection Ex n I I C, it is not necessary to connect a fuse in series.

If the position transmitter current circuit is connected to a current circuit in type of protection Ex n A II, a fuse according to IEC 60127-2/4, 250 V, with a rated current of max. Pn < 40 mW is to be connected in series. The fuse is to be installed outside the hazardous area. If the position transmitter current circuit is connected to a current circuit in type of protection Ex n I I C, it is not necessary to connect a fuse in series.

The manufacturer must ensure and document that the housing of the device, including all cable entries, complies with degree of protection IP 54 or IP 65 according to EN 60529 depending on the kind of application.

References:

EN 60079-15:2005

Test report: PTB Ex 08-22828

Certification Body for Explosion Protection Braunschweig, 10 December 2008

Dr.-Ing. U. Johannsmeyer
Director and President

PTB in Solid State
Physikalisch-Technische Bundesanstalt - Bundesallee 100 - D-38116 Braunschweig
Addendum Page 1

Electrical rating of intrinsically safe apparatus and apparatus for installation in hazardous locations.

Table 1: Maximum values

<table>
<thead>
<tr>
<th>Circuit No.</th>
<th>Terminal No.</th>
<th>Control signal</th>
<th>Inductive Limit switches</th>
<th>Software Limit switches</th>
<th>Fault signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11/12</td>
<td>2</td>
<td>5</td>
<td>3 and 4</td>
<td>3 and 4</td>
</tr>
<tr>
<td>2</td>
<td>31/32</td>
<td>6</td>
<td>81/82</td>
<td>41/42 and 51/52</td>
<td>41/42 and 51/52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>83/84</td>
</tr>
<tr>
<td>U (max)</td>
<td>28V</td>
<td>28V</td>
<td>28V</td>
<td>16V</td>
<td>20V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I (max)</td>
<td>115mA</td>
<td>115mA</td>
<td>25/52 mA</td>
<td>60mA</td>
<td>60mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (max)</td>
<td>1W</td>
<td>1W</td>
<td>500mW</td>
<td>250mW</td>
<td>250mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>35nF</td>
<td>5.3nF</td>
<td>5.3nF</td>
<td>13.4nF</td>
<td>13.4nF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0μH</td>
<td>0μH</td>
<td>0μH</td>
<td>0μH</td>
<td>0μH</td>
</tr>
</tbody>
</table>

Table 2: CSA/FM - certified barrier parameters of circuit 2 and 5

<table>
<thead>
<tr>
<th>Barrier</th>
<th>Supply barrier</th>
<th>Evaluation barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vac</td>
<td>R</td>
</tr>
<tr>
<td>circuit 2</td>
<td>28V</td>
<td>300Ω</td>
</tr>
<tr>
<td>circuit 5</td>
<td>28V</td>
<td>392Ω</td>
</tr>
</tbody>
</table>

Table 3: The correlation between temperature classification and permissible ambient temperature ranges shown in the table below:

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Permissible ambient temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>-40°C ... 60°C</td>
</tr>
<tr>
<td>T5</td>
<td>-40°C ... 70°C</td>
</tr>
<tr>
<td>T4</td>
<td>-40°C ... 80°C</td>
</tr>
</tbody>
</table>

Table 4: For the Model 3730 -331... Positioner the correlation between temperature classification, permissible ambient temperature ranges and maximum short-circuit current is shown in the table below:

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Permissible ambient temperature range</th>
<th>Maximum short-circuit current</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>-40°C ... 45°C</td>
<td>52mA</td>
</tr>
<tr>
<td>T5</td>
<td>-40°C ... 60°C</td>
<td>52mA</td>
</tr>
<tr>
<td>T4</td>
<td>-40°C ... 70°C</td>
<td>52mA</td>
</tr>
<tr>
<td>T6</td>
<td>-40°C ... 60°C</td>
<td>52mA</td>
</tr>
<tr>
<td>T5</td>
<td>-40°C ... 80°C</td>
<td>52mA</td>
</tr>
<tr>
<td>T4</td>
<td>-40°C ... 80°C</td>
<td>52mA</td>
</tr>
</tbody>
</table>

Notes: Entity parameters must meet the following requirements:

\[U_{max} \leq U_{VCC} \leq \frac{V_{max}}{I_{isc}} \leq I_{isc} \leq I_{max} \leq P_{max} \leq P_{max} \leq P_{max} \]

\[C_{0} \geq C \leq C_{0} + C_{load} \quad \text{and} \quad L_{0} \geq L \leq L_{0} + L_{load} \]

Revision Control Number: 1/ Jun. 2008

Addendum to EB 8394-3EN

Addendum Page 2

Addendum to EB 8394-3EN

Revision Control Number: 1/ Jun. 2008

Addendum to EB 8394-3EN
Intrinsically safe if installed as specified in manufacturer's installation manual.

CSA certified for hazardous locations

Ex ia IIC T6: Class I, Zone 0

Class I, Div. 1, Groups A, B, C, D.

Class II Div. 1, Groups E, F + G; Class III.

Type 4 Enclosure

Notes:

1. The apparatus may be installed in intrinsically safe circuits only when used in conjunction with CSA certified apparatus. For maximum values of U or Vmax; II or Imax; Pmax or Pmax; C and U of the various apparatus see Table 1 on page 1.

2. For barrier selection see Table 2 on page 2.

3. The installation must be in accordance with the C.E. C. Part 1.

4. Use only supply wires suitable for 5°C above surrounding temperature.

5. For CSA Certification, Safety Barrier must be CSA Certified and installed in accordance with C.E.C. Part 1. Each pair of I.S. wires must be protected by a shield that is grounded at the I.S. Ground. The shield must extend as close to the terminals as possible.

Circuit diagram of a ground-free signal circuit: (position indicator and forced venting function)

In grounded signal circuits with only one barrier, the return line must be grounded or included in the potential equalization network of the system.

Circuit diagram of a grounded signal circuit: (position indicator and forced venting function)

For the permissible maximum values for the intrinsically safe circuits 1, 3, 4 and 6 see Table 1.

For the permissible barrier parameters for the circuits 2 and 5 see Table 2.

Cable entry M 20 x 1.5 or metal conduit according to drawing No. 1030 – 0539 T or 1030 – 0540 T.
Addendum Page 7

Electrical rating of intrinsically safe apparatus and apparatus for installation in hazardous locations.

Table 1: Maximum values

<table>
<thead>
<tr>
<th>Control signal</th>
<th>Position Indicator</th>
<th>Forced venting function</th>
<th>Limit switches</th>
<th>Fault signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit No.</td>
<td>Indicator No.</td>
<td>Inductive</td>
<td>software</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>3 and 4</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>5</td>
<td>3 and 4</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3 and 4</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>3 and 4</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3 and 4</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>5</td>
<td>3 and 4</td>
<td>6</td>
</tr>
<tr>
<td>U or V<sub>max</sub></td>
<td>28V</td>
<td>28V</td>
<td>28V</td>
<td>28V</td>
</tr>
<tr>
<td>I or I<sub>max</sub></td>
<td>115mA</td>
<td>115mA</td>
<td>115mA</td>
<td>115mA</td>
</tr>
<tr>
<td>P or P<sub>max</sub></td>
<td>1W</td>
<td>1W</td>
<td>1W</td>
<td>1W</td>
</tr>
<tr>
<td>C<sub>i</sub></td>
<td>0.1μF</td>
<td>0.1μF</td>
<td>0.1μF</td>
<td>0.1μF</td>
</tr>
<tr>
<td>L<sub>i</sub></td>
<td>0μH</td>
<td>0μH</td>
<td>0μH</td>
<td>0μH</td>
</tr>
</tbody>
</table>

Addendum Page 8

Table 2: FM / CSA – approved barrier parameters of circuit 2 and 5

<table>
<thead>
<tr>
<th>Barrier</th>
<th>Supply barrier</th>
<th>Evaluation barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voc</td>
<td>R<sub>min</sub></td>
<td>Isc</td>
</tr>
<tr>
<td>P<sub>max</sub></td>
<td>Voc</td>
<td>R<sub>min</sub></td>
</tr>
<tr>
<td>circuit 2</td>
<td>28V</td>
<td>>196Ω</td>
</tr>
<tr>
<td>circuit 5</td>
<td>28V</td>
<td>>392Ω</td>
</tr>
</tbody>
</table>

Table 3: The correlation between temperature classification and permissible ambient temperature ranges is shown in the table below:

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Permissible ambient temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>60°C</td>
</tr>
<tr>
<td>T5</td>
<td>-40°C ≤ ta ≤ 70°C</td>
</tr>
<tr>
<td>T4</td>
<td>80°C</td>
</tr>
</tbody>
</table>

Table 4: For the Model 3730 – 331 . . . Positioner the correlation between temperature classification, permissible ambient temperature ranges and maximum short-circuit current is shown in the table below:

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Permissible ambient temperature range</th>
<th>Maximum short-circuit current</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>45°C</td>
<td>52mA</td>
</tr>
<tr>
<td>T5</td>
<td>-40°C ≤ ta ≤ 60°C</td>
<td>52mA</td>
</tr>
<tr>
<td>T4</td>
<td>75°C</td>
<td>75°C</td>
</tr>
<tr>
<td>T6</td>
<td>60°C</td>
<td>25mA</td>
</tr>
<tr>
<td>T5</td>
<td>-40°C ≤ ta ≤ 80°C</td>
<td>25mA</td>
</tr>
<tr>
<td>T4</td>
<td>80°C</td>
<td>80°C</td>
</tr>
</tbody>
</table>

Notes: Entity parameters shall meet the following requirements:

U or V_{oc} ≥ U or V_{max}/Is or I_{sc} or Is ≤ I or I_{max}/Po or P_{max} ≤ Pi or P_i

C_i ≥ C + C_{stable} and L_i ≥ Li + L_{stable}
Intrinsically safe II installed as specified in manufacturer's installation manual.

FM- approved for hazardous locations

Class I, Zone 0 A Ex ia IIC T6:
Class I, II, III, Div. 1, Groups A, B, C, D, E, F + G.

NEMA 4X

Notes:
1. The apparatus may be installed in intrinsically safe circuits only when used in conjunction with FM/CSA approved apparatus. For maximum values of U or Ymax; I or Imax; P or Pmax; C1 and U1 of the various apparatus see Table 1 on page 7.
2. For barrier selection see Table 2 on page 8.
3. The installation shall be in accordance with the National Electrical Code ANSI/NFPA 70 and ANSI/ISA RP 12.06.01.
4. Use only supply wires suitable for 5°C above surrounding temperature.

For the permissible maximum values for the intrinsically safe circuits 1, 3, 4 and 6 see Table 1
For the permissible barrier parameters for the circuits 2 and 5 see Table 2.
Cable entry in 20 x 1.5 or metal conduit according to drawing No. 1690 - 0349 T or 1690 - 0349 T

NEMA 4X

HART-capable positioner with position indicator or binary input or leakage detection, forced venting function (solenooid valve), fault signal and limit switches.

HAZARDOUS LOCATION (Div. 2)

SAFE LOCATION

Notes:
1. The installation shall be in accordance with the National Electrical Code ANSI/NFPA 70
2. For the maximum values for the individual circuits see Table 1
Cable entry only rigid metal conduit.
Installation drawing for Control Relay KHeb-cEx de Model Sj-b-N Proximity Sensors

HAZARDOUS LOCATION
- Class 1, Division 1, Groups A, B, C, D
- Class 2, Division 1, Groups E, F, and G
- Class 3, Division 1

SAFE LOCATION
- Intrinsically safe output to sensor or contact
- Intrinsically safe output to one common line possible

Model designation code:
- Type KHeb - cExd
- Terminals: 1-2, 3-4, 5-6
- \(a = \) Supply Voltage type A or B
- \(b = \) Supply Voltage type A or B
- \(c = \) Supply Voltage type A or B
- \(d = \) Number of channels 1 or 2

Terminal Diagram:
- L1: proximity sensor
- L2: software limit switch
- L3: proximity sensor
- L4: software limit switch
- L5: fault alarm
- L6: Terminal No.
- Terminal No.

External Position Sensor:
- Maximum capacitance of each inductive sensor: 80nF
- Maximum inductance of each inductive sensor: 200nH

Total series inductance and shunt capacitance of shield testing shall be restricted to the following minimum values:

<table>
<thead>
<tr>
<th>Control Relay Terminal No.</th>
<th>Groups</th>
<th>L [mΩ]</th>
<th>C [µF]</th>
<th>VDC [V]</th>
<th>ISC [mA]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2; 3-4; 5-6</td>
<td>A + B</td>
<td>64.6</td>
<td>1.27</td>
<td>12.9</td>
<td>17.9</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>999</td>
<td>3.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>744</td>
<td>10.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>