INSTALLATION, OPERATING AND MAINTENANCE INSTRUCTIONS
FOR
FAIRCHILD 24CS() M/P CONVERTERS
(STEPPER MOTOR IN COMMERCIAL ENCLOSURE)

GENERAL INFORMATION

The 24CS() M/P Converters allow incremental adjustment of regulator setpoint and provide for various adjustment times for full range operation.

Specifications Model 24CS
Stepper Motor 24CS 5

ENVIRONMENTAL
Stepper Motor Operating Temp. Range 0° - 120° F

ELECTRICAL
Stepper Motor Voltage to 23 - 26VDC@800mA
Transformer Board
Power Consumption 21 max. (watts)

PERFORMANCE
Stepper Motor

<table>
<thead>
<tr>
<th>Reg.</th>
<th>Pressure Range</th>
<th>Motor RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.01342</td>
<td>11.7</td>
</tr>
<tr>
<td>5</td>
<td>0.00151</td>
<td>15.5</td>
</tr>
<tr>
<td>10</td>
<td>0.0444</td>
<td>13.6</td>
</tr>
<tr>
<td>20</td>
<td>0.0444</td>
<td>13.6</td>
</tr>
<tr>
<td>30</td>
<td>0.0444</td>
<td>13.6</td>
</tr>
<tr>
<td>60</td>
<td>0.0444</td>
<td>13.6</td>
</tr>
<tr>
<td>80</td>
<td>0.0444</td>
<td>13.6</td>
</tr>
<tr>
<td>81</td>
<td>0.0444</td>
<td>13.6</td>
</tr>
<tr>
<td>100</td>
<td>0.0444</td>
<td>13.6</td>
</tr>
</tbody>
</table>

DEGREES of range screw all models, all pressures .4°/Step
PULSE COUNT (PULSE CNT) to "Full Range"
FULL RANGE ADJUSTMENT TIME (FF: ADJ TIME) is measured @ 500 PPS

PRINCIPLES OF OPERATION
Stepper Motor

The Model 24CS M/P Converter is a digital pulse controlled pressure regulator which has been configured with an integral translator. Electronic circuits in the translator convert the digital pulse input signals into control logic that operates a 20C step per revolution stepper Motor. The stepper motor in turn controls the output of a pressure regulator by driving its range screw through a 4.5:1 reduction gear. The translator consists of a control/Logic section and a power output section.

The Control/Logic section contains the logic sequence that determines the proper switching of the stepper motor windings to accomplish rotation. This section accepts the input signal that controls the direction of the motor and the type of switching sequence which is transmitted to the motor windings. This section also contains a pulse width modulated chopper circuit that controls the current in the motor windings.

The power output section uses a dual full bridge power transistor array to handle the power switching of the motor windings in a bi-polar circuit configuration.

For simple manual control in Full Step mode, a 24-volt power supply is required, together with a pulse generator to supply step pulses, a switch to control direction of rotation, and a wire jumper to select Full Stego mode (See Figure 1). In this case, each pulse present at the clock input of the Translator will result in one motor step or 3° of rotation. The stepper motor can be started and stopped by turning the pulse generator ON and OFF.

All inputs have pull up resistors to place them in a high logic state. As a result, all inputs can be changed by switch closures.

This simplifies manual control circuits, and as a result, the controlling device does not have to supply input current to the translator inputs.
Reset, Enable, and Half/Full Step inputs, Sync and Home outputs are all optional connections to the unit. These enable connection of the unit to a computer for control. When the Reset input is pulled LOW, the Translators four motor outputs are placed in an 0101 state. The state is considered the "HOME" or first logic state of a basic eight step sequence. Wave drive mode is also cancelled.

When the Enable input is pulled LOW, all inputs and outputs are disabled and power to the stepper motor is turned OFF. This condition conserves input/output power.

The Model 2400 Stepper unit will hold its last set position when disabled and will not need referencing when enabled.

The Half/Full step input is a selectable step mode input (See Figure 2).

Half step mode
Half step mode is selected by a high level on the HALF/FULL Input.

Figure 1
Terminal Block Connection and Block Diagram

When Half/full input to the Translator Board is held LOW, the Translator is in Full Step mode. When input is HIGH, the Translator operates in Half Step mode. This condition effectively doubles the step resolution of the unit.

Wave drive mode on one phase of Full Step mode is obtained by selecting Full Step Mode when the Translator is operating in an even numbered state (See Figure 3).

The Sync connection is used only with multiple unit installations and is an optional feature. Sync connection is an input or output of the chopper oscillator circuit which depends on the position of switch S1. The chopper oscillators of multiple unit installations may be synchronized by connecting all SYNC connections of the translators together.

In single unit installations, switch S1 should be placed in the open position.
Normal drive mode (Full Step)
Normal drive mode (also called "two-phase-on" drive) is selected by a low level on the HALF/FULL input when the translator is at an odd numbered state (1, 3, 5 or 7). In this mode the INH1 and INH2 outputs remain high throughout.

![Diagram of Full Step Input]

Wave drive mode
Wave drive mode (also called one-phase-on drive) is selected by a low level on the HALF/FULL input when the translator is at an even numbered state (2, 4, 6 or 8).

![Diagram of Wave Drive Mode]

The L297's is translator generates phase sequences for normal drive, wave drive and half step modes. The state sequences and output waveforms for these three modes are shown below. In all cases the translator advances on the low to high transition of CLOCK.

Clockwise rotation is indicated for anticlockwise rotation the sequences are simply reversed. RESET restores the translator to state 1, where ABCD = 0'01.

![Diagram of Motor Driving Phase Sequences]
The Model 24CS Series M/P Converters with Stepper Motors are identified with the following description and variations.

Catalog Number 24C S 80 5 3 00 0 0

Basic Model 2400 in Standard Commercial Housing

Motor Type DC Stepper (S)

Regulator Model
- Model 30
- Model 80
- Model 81

Voltage
24vDC to (5)

Translator Bd with Stepper Motor

Pressure Range (psig)
- 0–2 (1)
- .5–10 (2)
- .5–20 (3)
- .5–30 (4)
- 1–60 (5)
- 2–100 (6)
- 0–5 (7)

Motor Speed (rpm)
- Stepper Mtr only (00)
- Blank field (enter 0)
- Commercial (enter 0)

Installation
The 24CS Model 2400 may be wall mounted or pipe mounted (2" pipe clamp) by means of the integral bracket containing two mounting holes. The unit should be mounted vertically for drip proof operation.

Pneumatic Connections
Clean all pipe lines to remove dirt and scale before installation is made. When installing pipe or tube fittings into the regulator it is preferable to use teflon dope as a sealant if pipe compound is used.

Apply minimum amount of pipe compound to male threads of the air line only. Start with third thread back and work away from the end of the line to avoid possibility of getting compound into the regulator. Install regulator in air line; body is fitted with a ¼ NPT for the inlet and outlet connections of the Model 81; ¼ NPT for the Model 30 and ½ NPT for the Model 81.

Inlet and outlet connections are labeled (look for arrows denoting direction of flow on the underside of the unit) and should be tightened securely. Avoid undersized fittings that will limit flow through the regulator and cause pressure drop downstream.

NOTE: Oil free air only, must be applied to the regulator. The use of a filter to remove dirt and entrained liquid in the air line ahead of the regulator is required for correct performance. If an air line lubricator is used, it must be located downstream beyond the regulator in order to avoid interference with regulator performance. Instrument air is NOT required for the Model 30 regulator.
Figure 4
24CS Outline Dimensions

Model 81

Model 80

Model 30
Electrical Connections - Stepper Motor

For the 24CS unit, connections are made through the ½ inch conduit hole in the base plate after the cover is removed. Wires should be routed inside the unit so that they will not become entangled in the actuating mechanism. (See Figure 5 for proper routing.) For data runs of six feet or less, 22 gage wire may be used. For longer data runs, use 18 gage wire. Shielded cable should be used to achieve noise immunity for long data lines.

DO NOT run power leads within the same shield as the data lines. In order to keep power wiring as short as possible, locate the power supply close to the 24CS unit.

Terminal block connections are as follows:

Terminal number 1: Sync
2: Home
3: Reset
4: Half/Full
5: Clock
6: CW/CCW
7: Enable
8: +24vDC
9: Ground

*Power Supply must have a minimum capability of 15 amps @ 23-26 volts.

In multiple unit installations it may be desirable to synchronize the chopper oscillators of all Translators to minimize ground noise problems and the high frequency sound emitted by the stepper motor. Connect Sync terminals of all Translator boards together. Switch S1 on ONLY one of the translator boards must be placed in the OPEN position. All other S1 switches must be in the CLOSED position. This disables the RC oscillator networks and boards so configured will accept Sync terminal input for the oscillator. This input comes from the Translator board whose S1 switch is in the open position. (See Figure 6 for proper connections.)

The table below shows the functional parameters which are applied to the Translator board terminal block (Figure 7).

<table>
<thead>
<tr>
<th>Term</th>
<th>Function</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sync</td>
<td>input/output</td>
</tr>
<tr>
<td>2</td>
<td>Home</td>
<td>output</td>
</tr>
<tr>
<td>3</td>
<td>Reset</td>
<td>input</td>
</tr>
<tr>
<td>4</td>
<td>Half/Full</td>
<td>input</td>
</tr>
<tr>
<td>5</td>
<td>Clock</td>
<td>input</td>
</tr>
<tr>
<td>6</td>
<td>CW/CCW</td>
<td>input</td>
</tr>
<tr>
<td>7</td>
<td>Direction Contr.</td>
<td>input</td>
</tr>
<tr>
<td>8</td>
<td>Enable</td>
<td>input</td>
</tr>
<tr>
<td>9</td>
<td>+24vDC Power</td>
<td>input</td>
</tr>
<tr>
<td></td>
<td>Ground</td>
<td>input</td>
</tr>
</tbody>
</table>

When SW-1 is set for Internal Sync (Open), an output of the chopper oscillator is available for synchronizing the chopper circuits of other units with which the Translator board is interaced. These units must be set up for External Synchronization.

SW-1 MUST BE IN THE OPEN POSITION FOR OPERATION OF THE MODEL 2400 AS A SINGLE UNIT (NO SYNCHRONIZATION).
The positive side of the 24-vDC power supply is applied to Terminal 8. The Model 2400 will operate with an input voltage between 23–26 volts.

<table>
<thead>
<tr>
<th>Terminal</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Controller in 0101 (Home). Wave Drive Cancelled</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Half Step</td>
<td>Full Step When Translator Is In Odd State. (1, 3, 5, 7) Wave Drive In Even State</td>
</tr>
<tr>
<td>5</td>
<td>Advance One Increment</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Decrease</td>
<td>Increase</td>
</tr>
<tr>
<td>7</td>
<td>Translator Enabled</td>
<td>Inputs And Outputs Enabled</td>
</tr>
</tbody>
</table>

Adjustment

The HOME reference microswitch is adjusted at the factory to produce a signal at 0 psi output. To adjust to this value in the field, use the following procedure:

- Remove the cover and locate the microswitch adjustment screw (See Figure 5). Insert a Phillips head screwdriver into the adjusting screw, through the access hole in the motor plate. Turn the screw clockwise to decrease the pressure, or counterclockwise to increase the pressure.

Operation

Manual

Figure 1 shows the configuration of Stepper Motor, Power Supply and Pulse Generator to achieve manual motor control of the Model 2400. Turning the pulse generator ON and OFF will drive the Stepper motor in a direction dependent on the position of the direction switch. Rotation of the motor will be dependent on the number of pulses applied by the generator during the time it is ON.

Model 2400 Stepper Motor Set Regulator Translator Board Timing Chart

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T Ck</td>
<td>0.5</td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>T s</td>
<td></td>
<td>1</td>
<td>μs</td>
</tr>
<tr>
<td>T h</td>
<td></td>
<td>1</td>
<td>μs</td>
</tr>
<tr>
<td>T r</td>
<td></td>
<td>1</td>
<td>μs</td>
</tr>
<tr>
<td>Tr Ck</td>
<td></td>
<td>1</td>
<td>μs</td>
</tr>
</tbody>
</table>

If the Model 2400 is to be synchronized to an external unit, SW-1 must be set for external sync (CLOSED) to accept a sync signal.

When the Translator board Controller output is in an 0101 state, this state is “anded” with the Home position limit switch state to establish a home position reference signal, available on Terminal 2. Under these conditions, the output signal is LOW.

When the external circuit connected to terminal 3 is in a LOW state, the Translator board Controller is reset to an 0101 state. In addition, if the wave drive mode has been set, it will be cancelled and the operational mode will return to the mode selected initially.

When the input to Terminal 4 is LOW, the Controller operates in Full Step mode (200 steps per revolution of the motor shaft). When the input to Terminal 4 is HIGH, the Controller operates in Half Step mode (400 steps per revolution of motor shaft).

To obtain operation in wave drive mode (one phase in Full Step mode), the Controller is first set to 1 Half Step mode, reset to zero, and then advanced one step so that the Controller is in an even numbered state. (See clock function for advance one step procedure.)

A LOW input to Terminal 4 will place the Controller in the wave drive mode. Wave drive mode may be used on some occasions where it is necessary to reduce power (approximately 50%) to drive the motor. In this case the motor is driven at 200 steps per revolution, but with lower torque than in Full Step mode.

A LOW input (pulse) on Terminal 5 advances the motor one increment. This motor step occurs on the rising edge of the pulse.

When the input to Terminal 6 is HIGH, the motor will be driven to decrease regulator output pressure. When the input is LOW, the motor will be driven to increase regulator output pressure.

When the input to Terminal 7 is LCW the Translator circuit is disabled. In this case power to the stepper motor is turned off and input signals to the board have no effect on the motor drive circuits. The Model 2400 will hold the last position to which it was driven and does not need to be re-oriented when the Translator circuits are again enabled. This allows parallel operation of two or more Model 2400 units, any of which may be selected for repositioning by applying an enable signal.
Computer Control

The table shows minimum time relationships between translator board input signals. Computer output current rise or decay would be required to meet these limitations.

Maintenance

The Model 30 and 81 regulator is easily disassembled for the occasional cleaning or removal of foreign matter. Before this is done however, shut off the valve upstream of the regulator to prevent the escape of air when the regulator is disassembled. There is no need to remove the regulator from the pipe line; remove the two screws on the bottom of the unit and pull out the inner valve assembly. Wash the inner valve assembly with solvent, exercising care to avoid damaging the diaphragm and valve facings. Replace the assembly carefully. The vent hole in the bonnet should be kept clear. A slight flow of air through this hole is necessary for the proper operation of the regulator. The adjusting screw should be lubricated with Molykote type "G" grease.

CAUTION: Avoid such solvents as acetone, carbon tetrachloride and trichlorethylene.

Motor Drive Disassembly for Model 24CS stepper motor.
(Figure 12)

1. Remove Cover Retaining Screw (2) and Cover (1). Mark Adapter Plate (2) and regulator body so that all parts can be realigned during assembly.
2. Remove four leads from Translator Board Assembly (17) and pull leads through holes in the Motor Assembly Plate (3) and Top Plate (10).
3. Remove three Screws (4) from Motor Plate (3) and lift off Top Plate (10).
4. Remove Gear Hub Assembly (5) by pulling it straight up.
5. Remove two leads from Switch Assembly (15A, B).
6. Remove three Screws (9) holding down Top Plate (10). Remove Clip (9) from Top Plate (10).
7. Lift off Top Plate (10) including Switch Assembly (15A, B).
8. Using an Allen wrench, loosen set screw on Coupling Shaft Assembly (11) and slide the assembly off the Regulator Range Screw.
9. Remove Spring Washer (13) and Guide Bar Assembly (16).

10. Remove two Screws (18) holding Translator Board Assembly (17) to Bottom Plate Assembly (14) and remove the Translator Board Assembly (17).
11. Remove Screw (9) holding Translator Board assembly (143) to Bottom Plate Assembly (14).
12. Remove Nut or Screws holding Regulator to Adapter Plate (22).
13. Proceed to service kit installation instructions for the specific Regulator.

Motor Drive Assembly for Model CS stepper motor.

1. Place the Adapter Plate (22) and Bottom Plate Assembly (14) on the Regulator. Use Nut or Screws to secure the Adapter Plate (22) to the Regulator.
2. Using two Screws (16), fasten Translator Board Assembly (17) to Bottom Plate Assembly (14B) using Screw (6).
3. Fasten I.298 on Translator Board Assembly (17) to Bottom Plate Assembly (14B) using Screw (6).
4. Place Guide Bar Assembly (16) on Regulator Range Screw so that cutout is engaged in guide on Bottom Plate Assembly (14) and Limit Switch Actuator is closest to the Bottom Plate Assembly (14).
5. Place Spring Washer (13) concave side down over the Range Screw.
6. Place Coupling Shaft Assembly (11) on Regulator Range Screw and on top of Spring Washer (13). Position the lower coupling nut of the Coupling Shaft Assembly (11) on the Range Screw so that it compresses the Spring Washer (13) to approximately 1/2 of its free height. Tighten the set screw securely against the flat on the shaft.

NOTE: Apply Locite to set Screw before tightening,

7. Position Top Plate Assembly (10) including Limit Switch Assembly (15A, B) on the Bottom Plate Assembly (14A) posts, and slide the Switch Assembly (15A, B) over the post located above the Regulator Inlet port.
8. Using three Screws (9), fasten Top Plate Assembly (10) to posts of the Bottom Plate Assembly (14).
9. Fasten left hand lead from Translator Board Assembly (17) to the middle terminal of the microswitch. Fasten right hand lead from Translator Board Assembly (17) to the top terminal of the microswitch.
10. Place Clip (19) over Top Plate Assembly (10) and component heat sink. Apply silicone heat sink compound to pack before securing.
11. Place Gear Assembly (5) over Coupling Shaft Assembly (11) and rotate so that slots in Gear Assembly (5) engage the pins on Coupling Shaft Assembly (11). Press the assembly down flat against the bearing on Top Plate Assembly (10).
12. Turn the assembly so that the mounting holes in Adapter Plate (22) are directly in view and the INLET port of the regulator is on the left.
13. Position Motor Plate Assembly (3) so that the bearing on Motor Plate Assembly (3) is directly over the Gear Assembly (5) and the stepper motor pinion engages the large gear. Fasten the Motor Plate Assembly (3) to the Top Plate Assembly (10) using three Screws (4).
14. Thread four leads from the motor through holes in the Motor Plate Assembly (3) and Top Plate Assembly (10).
15. Connect leads to the Translator Board Assembly as follows:
 - 1st term: from bottom plate
 - Black
 - 2nd term: from bottom plate
 - Green
 - 3rd term: from bottom plate
 - Blue
 - 4th term: from bottom plate
 - Red

Adjust the limit switch for the specific application.

16. Place Cover (1) on the unit and fasten with Retaining Screw (2).

Identifies an M/P Controller with the following characteristics:

Model 30
- Voltage: 24vDC to Translator Board
- Regulator: Range ½–30 psig
 - Regulator: EB-15742-30232

Model 80
- Voltage: 24vDC to Translator Board
- Regulator: Range ½–20 psig
 - Regulator: EB-15775-80532

Figure 9
24CS 30 Characteristics

Figure 10
24CS 80 Characteristics

Figure 11
24CS 81 Characteristics

<table>
<thead>
<tr>
<th>Pressure Range</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–2</td>
<td>EB-15742-30212</td>
</tr>
<tr>
<td>½–10</td>
<td>-30222</td>
</tr>
<tr>
<td>½–30</td>
<td>-30232</td>
</tr>
<tr>
<td>1–60</td>
<td>-30242</td>
</tr>
<tr>
<td>2–100</td>
<td>-30252</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pressure Range</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–5</td>
<td>EB-15776-81312</td>
</tr>
<tr>
<td>½–20</td>
<td>-81332</td>
</tr>
<tr>
<td>1–60</td>
<td>-81343</td>
</tr>
<tr>
<td>2–100</td>
<td>-81352</td>
</tr>
<tr>
<td>0–5</td>
<td>-81322</td>
</tr>
<tr>
<td>Index</td>
<td>Part No.</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>1</td>
<td>EB-15557-2</td>
</tr>
<tr>
<td>2</td>
<td>EB-11182-2</td>
</tr>
<tr>
<td>3</td>
<td>EB-15897-1</td>
</tr>
<tr>
<td>3A</td>
<td>EB-15909</td>
</tr>
<tr>
<td>3B</td>
<td>EB-13291</td>
</tr>
<tr>
<td>3C</td>
<td>EB-15905</td>
</tr>
<tr>
<td>3D</td>
<td>EB-15995</td>
</tr>
<tr>
<td>4</td>
<td>EB-1C32-6</td>
</tr>
<tr>
<td>5</td>
<td>CD-1625-1</td>
</tr>
<tr>
<td>6</td>
<td>EB-1C32-32</td>
</tr>
<tr>
<td>7</td>
<td>EB-15996-1</td>
</tr>
<tr>
<td>8</td>
<td>EB-8223-4</td>
</tr>
<tr>
<td>9</td>
<td>EB-11182-3</td>
</tr>
<tr>
<td>10</td>
<td>EB-15898-1</td>
</tr>
<tr>
<td>10A</td>
<td>EB-15990-10</td>
</tr>
<tr>
<td>11</td>
<td>EB-16026-1</td>
</tr>
<tr>
<td>12</td>
<td>EB-15569</td>
</tr>
<tr>
<td>13</td>
<td>EB-15566</td>
</tr>
<tr>
<td>14</td>
<td>EB-15899</td>
</tr>
<tr>
<td>14A</td>
<td>EB-15553</td>
</tr>
<tr>
<td>14B</td>
<td>EB-15908</td>
</tr>
<tr>
<td>15</td>
<td>EB-14486-7</td>
</tr>
<tr>
<td>15A,B</td>
<td>EB-15988-1</td>
</tr>
<tr>
<td>16</td>
<td>EB-15907-1</td>
</tr>
<tr>
<td>16A</td>
<td>EB-15906-1</td>
</tr>
<tr>
<td>16B</td>
<td>EB-14486-4</td>
</tr>
<tr>
<td>16C</td>
<td>FR-15564</td>
</tr>
<tr>
<td>17</td>
<td>EB-15896</td>
</tr>
<tr>
<td>18</td>
<td>EB-14986-7</td>
</tr>
<tr>
<td>19</td>
<td>EB-15992-1</td>
</tr>
<tr>
<td>20</td>
<td>EB-5204</td>
</tr>
<tr>
<td>21</td>
<td>EB-5205</td>
</tr>
<tr>
<td>22</td>
<td>EB-15900-1</td>
</tr>
</tbody>
</table>

Figure 12
Stepper Motor Exploded View
Model 30 Service Kit

1. Check parts in the EA-15703 service kit against the parts marked with an asterisk in the exploded view and the associated table.

2. Remove two Screws (20) holding the Regulator to Adapter Plate (18) and remove the Adapter Plate from Regulator.

3. Remove four Screws (3) holding Bonnet (2) to Body (10). Mark Bonnet (2) and Body (10) so they can be reassembled properly.

4. Set aside Bonnet (2), Range Spring Washer (4) and Range Spring (5).

5. Remove Diaphragm Assembly (6) and discard.

6. Remove four Screws (7) holding Seal Plate (8) to Body (10).

7. Remove two Screws (16) holding Retainer Plate (14) and Cup (15) to Body (10).

8. Remove Retainer Plate (14), Cup (15), Inner Valve Assembly (13) and Screen (12).

9. Remove Seal Plate Assembly (8) from Body (10).

NOTE: It will be necessary to lift and twist the plate in order to remove it. Make sure that the aspirator is not damaged in the process of removal.

10. Remove Seal Plate Gasket (5) from Body (10) and discard.

11. Using a suitable dowel rod, tap out the Seat Ring Assembly (11) from Body (10) and discard.

12. Obtain Seat Ring Assembly (11) from service kit and drop into the bottom hole in the Body (10) brass end first. Insure that it is seated against the shoulder in Body (10).

13. Obtain Seal Plate Gasket (9) from service kit and place in Body (10), narrow end of hole over the port in the Body (10) marked with an arrow and going out of the Body. (10)

14. Using four Screws (7) secure new Seal Plate (3) to Body (10) with aspirator extending into port identified in Step 13.

15. Place Filter Screen (12) from service kit in the groove in Inner Valve Assembly (13). Set the assembly into the hole in the bottom of the Body (10), aligning Pintle of the Inner Valve Assembly (13) so that it drops in to Seal Plate (8) center tube.

16. Tap Inner Valve Assembly (12) so that the brass shoulder is flush with the bottom of the Body (10). Place Retainer Plate (14) over the Inner Valve Assembly (13) and align it with holes in the Body (10).

17. Place retainer Cap (5) over the Retainer Plate (14) and secure to Body (10) with two Screws (7).

18. Obtain Diaphragm Assembly (6) from service kit and place on Body (10) so that the oval Cup faces up and the four holes in the Diaphragm Assembly (6) are aligned with holes in the Body (10).

CAUTION: Make sure that the hole in the center of Diaphragm Assembly (6) is directly over the Inner Valve Assembly (13) Pintle.

19. Set Range Spring (5) over the Nut on top of Diaphragm Assembly (6) and set Range Cup (4) on top of the Range Spring (5). Range Screw recess facing up. Place some Molykote grease in the recess.

20. Place Bonnet (2), over Body (10) making sure that marks from Step 3 are aligned.

21. Using four Screws (3), secure Bonnet (2) to Body (10).

22. Using two Screws EB-1032-6 (not shown), attach Regulator to Adapter Plate (22).

23. Proceed to instructions for Motor Drive Assembly.
<table>
<thead>
<tr>
<th>Index</th>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EB-15550</td>
<td>Range Screw</td>
</tr>
<tr>
<td>1</td>
<td>EB-1835</td>
<td>Bonnet</td>
</tr>
<tr>
<td>2</td>
<td>EB-1032-12</td>
<td>Screw</td>
</tr>
<tr>
<td>3</td>
<td>EB-15780-1</td>
<td>Spring Seat</td>
</tr>
<tr>
<td>4</td>
<td>EB-7141-()</td>
<td>Spring</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>See Table Control Diaphragm Assy**</td>
</tr>
<tr>
<td>6</td>
<td>EB-16122-1</td>
<td>Gasket</td>
</tr>
<tr>
<td>6A</td>
<td>EB-1032-5</td>
<td>Screw</td>
</tr>
<tr>
<td>7</td>
<td>EB-1032-5</td>
<td>See Table Seal Plate Assembly**</td>
</tr>
<tr>
<td>8</td>
<td>EB-7136</td>
<td>Body**</td>
</tr>
<tr>
<td>9</td>
<td>EB-1820</td>
<td>Inner Valve Assembly</td>
</tr>
<tr>
<td>10</td>
<td>EB-6070</td>
<td>Seat</td>
</tr>
<tr>
<td>11</td>
<td>EB-15733 Service Kit Components</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>EB-6017</td>
<td>Screen Filter</td>
</tr>
<tr>
<td>13</td>
<td>EB-15727</td>
<td>Retainer Plung</td>
</tr>
<tr>
<td>14</td>
<td>EB-1032-5</td>
<td>Screw</td>
</tr>
</tbody>
</table>

Number depends on Range

<table>
<thead>
<tr>
<th>PORT SIZE</th>
<th>BCDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 NPT</td>
<td>EB 15614-1</td>
</tr>
<tr>
<td>1/4 BSPT</td>
<td>EB 15614-3</td>
</tr>
<tr>
<td>1/4 BSPT</td>
<td>EB 15614-4</td>
</tr>
<tr>
<td>1/2 NPT</td>
<td>EB 15614-2</td>
</tr>
</tbody>
</table>

Figure 13
Model 30 Exploded View
NOTE A:
Gasket to be applied (if req'd) to piston at top of diaphragm assembly. Use only when replacing old style diaphragm assembly which has a formed piston.

Service Kit Installation

Model 80 Service Kit

1. Check parts in the EA-15704 service kit against the parts marked with an asterisk in the exploded view and the associated table.

2. Remove Nut (17) and Washer (17A) holding Regulator to Adapter Plate (18) and remove Adapter Plate from Regulator.

3. Turn out Flange Screw Assembly (1) to relieve tension on spring.

4. Remove four Bonnet Screws (15). Set aside Range Spring and Spring Cap.

CAUTION: Spring (13) is in compression. Screws should be removed carefully, allowing the spring to expand.

5. Set aside Spring (13), after removing Bonnet Assembly (2), Diaphragm Assembly (4), Pilot Body Assembly (7), Diaphragm (12), Spacer Ring (9) and Diaphragm Assembly (8) from Body and Valve Assembly (10). Remove any pipe fittings in Body ports.

6. Remove Orifice Assembly (11) and Gasket (21) from Body and Valve Assembly (10).

7. Unscrew Plug (23) from Body (10). Remove and discard Pintle (19) and replace Conical Spring (22). Place Conical Spring (22) inside Cup of Plug (23). Clear Body Assemblies (10) and (7) with a suitable solvent. Blow dry with compressed air.

8. Turn Body (10) over, so that plug end faces up.

9. Place Pintle (19) from kit into plug end of Body (10), valve end up. Hold the Pintle securely which extends from the opposite end of Body (10) and insert Conical Spring (22) and Plug (20) into plug end of Body (10). Screw the Plug (23) into body (10) until it is tight.

CAUTION: Insure that short end of Pintle (19) fits into top of Conical Spring (22).

10. Secure Orifice Assembly (11) and Gasket (21) from kit. Place Gasket (21) over threaded portion of Orifice Assembly (11) and screw the assembly into the port on Body (10) opposite port marked GAUGF.

11. Place Spacer Ring (9) on Body (10), making sure that six holes in the Spacer Ring match the six holes in Body (10).

12. Obtain Diaphragm (12) from kit and place it on top of Spacer Ring (9), making sure that six holes in the Diaphragm (12) match the six holes in Spacer Ring (9).

13. Place the Pilot Body Assembly (7) on top of Diaphragm (12), making sure that the six holes on the bottom of Pilot Body Assembly (7) match the holes in Diaphragm (12). Check that Anvil (6) is seated in the center hole of the Spring Plate.

14. Obtain Diaphragm Assembly (4) from kit and place it in the recess of the Pilot Body Assembly (7), Place Range Spring and Spring Cap on top of Diaphragm Assembly (4).
15. Position Bonnet Assembly (2) over the Pilot Body Assembly (7) so that the signal port in the Bonnet Assembly (2) is over the port marked with the arrow pointing into the unit.

NOTE: Output port 3 on the side opposite Spacer Ring (9) which has the vent hole.

16. Grasp the Spacer Ring (9) firmly, and lift up, being careful that all parts above it remain in alignment. Set the stacked parts aside.

17. Obtain Spring (13) from the kit and place it in the cup on Body (10), directly over the Pin (15).

18. Obtain Diaphragm Assembly (8) from the kit and place it on top of Spring (13), making sure that holes in the Diaphragm match the six holes in Body (10), when the Spring (13) is compressed.

19. Carefully place the assembled stack set aside in Step 18 or top of the Diaphragm Assembly (8), making sure large piston is on top and that six holes in the Spacer Ring (9) match the holes in Diaphragm Assembly. Place Screws (15) into the Bonnet Assembly (2), until several threads are engaged on each Screw.

20. Carefully tighten opposite Screws until Spring (13) is compressed.

CAUTION: Insure that the Screws do not cut the Diaphragm as they are being tightened.

22. Insert Regulator into Adapter Plate (22) and fasten with Washer (21) and Nut (20) (page 10).

23. Proceed to instructions for Motor Drive Assembly

Index	Part No.	Description
1 | EB-15559 | Range Screw
2 | EB-9536-4 | Bonnet Assembly
4 | EB-1219 | Diaphragm Assembly
6 | EB-9547 | Anvil
7 | EB-9530-3 | Pilot Body Assembly
8 | EB-13681 | Diaphragm Assembly
9 | EB-13679-1 | Spacer Ring
10 | EB-13680-1 | Body and Valve Assembly
11 | EB-9348-3 | Orifice Assembly
12 | EB-12926-1 | Diaphragm
13 | EB-9917 | Spring
15 | EB-1032-28 | Screw
18 | EB-1120 | Nut
19 | EB-13674 | Pin
20 | EB-130-C12-1-70 | O Ring
21 | EB-9346 | Gasket
22 | EB-9212 | Conical Spring
23 | EB-13676 | Plug

*EA-15704 Kit Components

Figure 14
Model 80 Exploded View
Service Kit Installation

Model 81 Service Kit

1. Check parts in the EA-12922 Service Kit against the parts marked with an asterisk in the exploded view and the associated table.

2. Remove Nut (17) and Washer (17A) holding Regulator to Adapter Plate (18) and remove Adapter Plate from Regulator. Mark all parts of the Regulator, starting from the IN port and working up to the Bonnet (1) to facilitate reassembly. Remove any inserts in the IN and OUT ports.

3. Back off Range Screw Assembly (3) to remove compression on Range Screw.

4. Remove four Screws (2) securing Bonnet (1) to Pilot Body Assembly.

5. Remove Diaphragm Assembly (4).

6. Loosen six Screws (3) holding Pilot Body Assembly (5) to Body Assembly (12).

WARNING: Spring (9) is under compression. Loosen Screws (6) carefully so that Pilot Body (5) separates from Body Assembly (12).

7. Lift Diaphragm and Piston Assembly (8) together with Spacer Ring Assembly (7) away from Body Assembly (12) and set aside.

8. Remove Spring (9) and set aside.

9. Remove four Screws (19) holding Seal Plate Assembly (10) to Body Assembly (12).

10. Remove Gasket (11) from Body Assembly (12).

11. Remove two Screws (18) holding Retainer Cap (17) and Retainer Plate (16) to Body Assembly (12) and set aside Retainer Cap (17) and Retainer Plate (16).

12. Tap out the Inner Valve Assembly (14) and Screen (15) from Body Assembly (12).

13. Using a dowel rod, tap out Ring Seat (13) from Body Assembly (12).

14. Obtain Ring Seat (13) from the service kit and insert in the bottom hole of Body Assembly (12), brass end first. Tap with a dowel rod to assure that Ring Seat (13) is seated against the shoulder in Body Assembly (12).

15. Insert Screen (15) from the service kit into the groove in the Inner Valve Assembly (14) obtained from the service kit. Insert the assembly Pin first into the bottom hole of the Body Assembly (12). Press until brass shoulder is flush with the bottom of Body Assembly (12).

16. Align the holes in the Retainer Plate (16) with the two holes in the bottom of the Body Assembly (12). Align the holes in Retainer Cap (17) with the holes in the Retainer Plate (16) and secure both to the Body Assembly (12) with two Screws (19).

17. Obtain Gasket (11) from the service kit and place in Body Assembly (12), aligning four holes in Gasket (11) with holes in Body Assembly (12).

18. Place Seal Plate (10) over Gasket (11), brass seal tube facing up, aligning four holes in Seal Plate (10) with holes in Gasket (11). Pin on the Inner Valve Assembly (14) extends through the seal plate tube and the ball bearing in the Seal Plate is over the OUT port.

19. Fasten Seal Plate (10) to Body Assembly (12) with four Screws (19).

20. Obtain Diaphragm Assembly (8) and Ring Assembly (7) from service kit. Place Diaphragm Assembly (8) into Ring Assembly (7) (hexagonal Nut on Orifice side of the ring) so that the Diaphragms overlap top and bottom of Ring Assembly (7). Align six Screw holes and two passage holes in Diaphragm Assembly (8) with holes in Ring Assembly (7).

21. Place Spring (9) over the seal tube on Seal Plate (10).

22. Place Pilot Body Assembly (5) over the assembly in Step 21, so that six holes in Pilot Assembly (3) are aligned with the six holes of assembly in Step 21 and the passage hole in Diaphragm Assembly (8) which is next to the drilled passage in the bottom well of Assembly (5) is directly over the Orifice in the Ring Assembly (7).

CAUTION: Make sure that the Anvil (4A) is not lost while pushing Assembly (5).

23. Drop six Screws (6) into the holes in Pilot Body Assembly (5).

24. Place assembly of step 24 over Spring (9), aligning marks placed on Pilot Body Assembly (5) and Body Assembly (12) in Step 2.

25. Tighten six Screws (6) alternately so that Diaphragms are not damaged by the Screws.

26. Place Diaphragm Assembly (5) into well Pilot Body Assembly (5).

27. Place Bonnet Assembly (1) on Pilot Body Assembly (5), aligning marks placed on the Regulator in Step 2, and aligning four holes in Assembly (1) with the four holes in Assembly (5). Secure Bonnet Assembly (1) to Pilot Body Assembly (5) using four Screws (2). Insert regulator into Adapter Plate (22) and fasten with Washer (21) and Nut (20) (page 10).

28. Proceed to instructions for Motor Drive Assembly.
<table>
<thead>
<tr>
<th>Index</th>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EB-9536-4</td>
<td>Borent Assembly</td>
</tr>
<tr>
<td>2</td>
<td>EB-1032-12</td>
<td>Screw</td>
</tr>
<tr>
<td>3</td>
<td>CD-15559</td>
<td>Range Screw</td>
</tr>
<tr>
<td>4</td>
<td>EB-12191</td>
<td>Diaphragm Assembly</td>
</tr>
<tr>
<td>4A</td>
<td>EB-9547</td>
<td>Anvil</td>
</tr>
<tr>
<td>5</td>
<td>EB-12224</td>
<td>Pilot Body Assembly</td>
</tr>
<tr>
<td>6</td>
<td>EB-1032-24</td>
<td>Screw</td>
</tr>
<tr>
<td>7</td>
<td>EB-16014-1</td>
<td>Spacer Ring Assembly</td>
</tr>
<tr>
<td>8</td>
<td>FR-15869-1</td>
<td>Control Diaphragm Assy (20, 60, 100 PSI)</td>
</tr>
<tr>
<td>9</td>
<td>EB-12227</td>
<td>Spring</td>
</tr>
<tr>
<td>10</td>
<td>EB-15739-1</td>
<td>Seat Plate Assembly</td>
</tr>
<tr>
<td>11</td>
<td>EB-6063</td>
<td>Gasket</td>
</tr>
<tr>
<td>12</td>
<td>CD-14960-1</td>
<td>Body Assembly</td>
</tr>
<tr>
<td>13</td>
<td>EB-15074-1</td>
<td>Seat Assembly</td>
</tr>
<tr>
<td>14</td>
<td>EB-15578-1</td>
<td>Inner Valve Assembly</td>
</tr>
<tr>
<td>15</td>
<td>EB-6017</td>
<td>Screw</td>
</tr>
<tr>
<td>16</td>
<td>EB-6027</td>
<td>Retainer Plate</td>
</tr>
<tr>
<td>17</td>
<td>EB-7136</td>
<td>Retainer Cap</td>
</tr>
<tr>
<td>18</td>
<td>FR-1032-6</td>
<td>Screw</td>
</tr>
<tr>
<td>19</td>
<td>EB-1032-5</td>
<td>Screw</td>
</tr>
</tbody>
</table>

*EA-15705-1 Kit Components
For EA-15705-2, Control Diaphragm Assembly is EB-15869-2

*EB-15869-2 for 2.5 FSI

Figure 15
Model 81 Exploded View
TROUBLE SHOOTING
CHECK
Leakage
Body screw tightness
Disphragm
High Bleed
Relief pintle and relief seat for
damage or contamination
Difficult to adjust
Adjusting screw, seal ring
Lubrication

REPAIR PARTS LIST
Service kits are available for repair of regulators as follows:
EA-15703 Model 30
EA-18037-1 Model 30, 100 PSI Fange
EA-15704 Model 80
EA-15705 Model 81

Figure 16
Translator
LEGAL NOTICE:

The information set forth in the foregoing Installation, Operation and Maintenance Instructions shall not be modified or amended in any respect without prior written consent of Fairchild Industrial Products Company. In addition, the information set forth herein shall be furnished with each product sold incorporating Fairchild's unit as a component thereof.